Suppr超能文献

Cooperative lipid-protein interaction. Effect of pH and ionic strength on polymyxin binding to phosphatidic acid membranes.

作者信息

Sixl F, Galla H J

出版信息

Biochim Biophys Acta. 1979 Nov 2;557(2):320-30. doi: 10.1016/0005-2736(79)90330-4.

Abstract

The binding of polymyxin-B to charged dipalmitoyl phosphatidic acid membranes has been studied as function of the external pH and of the ionic strength of the buffer solution. The phase transition curves were obtained by measuring the fluorescence depolarization of diphenyl hexatriene incorporated into the membrane with temperature. The molecular process of polymyxin binding was elucidated: 1. At an ionic strength of I greater than or equal to 0.1 mol/l a three step phase transition curve is found. A high-temperature step corresponds to the non-bound lipid. A lowered phase transition concerns to protein-bound lipid domains. This again is splitted into two steps. An inner core of the domain is characterized by a lipid-protein complex which is stabilized through hydrophobic and electrostatic interactions between polymyxin and the charged lipid. This core is surrounded by an outer belt of only hydrophobically bound molecules. This part shows a lower phase transition temperature than the inner core. 2. The binding curves of polymyxin to phosphatidic acid membranes depend strongly on the ionic strength of the water phase. The cooperativity of the binding process increases with increasing ionic strength and reaches a constant value at I greater than 0.2 mol/l. The maximum fraction of bound lipid decreases with increasing ionic strength. 3. The pH of the water phase strongly influences the cooperative binding process. At pH 6 a loss of cooperativity is observed at low ionic strength. Increasing the ion concentration to I = 0.3 mol/l recuperates the cooperativity of the binding process. At pH 3.0 no cooperative binding is obtained even at high ionic strength.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验