Ng Joel Jia Wei, Wang Eugene, Zhou Xinyan, Zhou Kevin Xiang, Goh Charlene Xing Le, Sim Gabriel Zheng Ning, Tan Hiang Khoon, Goh Serene Si Ning, Ng Qin Xiang
NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Department of Oral and Maxillofacial Surgery, McGill University Health Center, Montreal, Quebec, Canada.
BMC Med Inform Decis Mak. 2025 Jul 1;25(1):236. doi: 10.1186/s12911-025-03061-0.
BACKGROUND: Clinical documentation is vital for effective communication, legal accountability and the continuity of care in healthcare. Traditional documentation methods, such as manual transcription, are time-consuming, prone to errors and contribute to clinician burnout. AI-driven transcription systems utilizing automatic speech recognition (ASR) and natural language processing (NLP) aim to automate and enhance the accuracy and efficiency of clinical documentation. However, the performance of these systems varies significantly across clinical settings, necessitating a systematic review of the published studies. METHODS: A comprehensive search of MEDLINE, Embase, and the Cochrane Library identified studies evaluating AI transcription tools in clinical settings, covering all records up to February 16, 2025. Inclusion criteria encompassed studies involving clinicians using AI-based transcription software, reporting outcomes such as accuracy (e.g., Word Error Rate), time efficiency and user satisfaction. Data were extracted systematically, and study quality was assessed using the QUADAS-2 tool. Due to heterogeneity in study designs and outcomes, a narrative synthesis was performed, with key findings and commonalities reported. RESULTS: Twenty-nine studies met the inclusion criteria. Reported word error rates ranged widely, from 0.087 in controlled dictation settings to over 50% in conversational or multi-speaker scenarios. F1 scores spanned 0.416 to 0.856, reflecting variability in accuracy. Although some studies highlighted reductions in documentation time and improvements in note completeness, others noted increased editing burdens, inconsistent cost-effectiveness and persistent errors with specialized terminology or accented speech. Recent LLM-based approaches offered automated summarization features, yet often required human review to ensure clinical safety. CONCLUSIONS: AI-based transcription systems show potential to improve clinical documentation but face challenges in accuracy, adaptability and workflow integration. Refinements in domain-specific training, real-time error correction and interoperability with electronic health records are critical for their effective adoption in clinical practice. Future research should also focus on next-generation "digital scribes" incorporating LLM-driven summarization and repurposing of text. CLINICAL TRIAL NUMBER: Not applicable.
背景:临床文档对于医疗保健中的有效沟通、法律责任和护理连续性至关重要。传统的文档记录方法,如人工转录,既耗时又容易出错,还会导致临床医生倦怠。利用自动语音识别(ASR)和自然语言处理(NLP)的人工智能驱动转录系统旨在实现临床文档记录的自动化,并提高其准确性和效率。然而,这些系统在不同临床环境中的性能差异很大,因此有必要对已发表的研究进行系统综述。 方法:对MEDLINE、Embase和Cochrane图书馆进行全面检索,以确定评估临床环境中人工智能转录工具的研究,涵盖截至2025年2月16日的所有记录。纳入标准包括涉及临床医生使用基于人工智能的转录软件的研究,并报告诸如准确性(如单词错误率)、时间效率和用户满意度等结果。系统提取数据,并使用QUADAS-2工具评估研究质量。由于研究设计和结果存在异质性,因此进行了叙述性综合分析,并报告了主要发现和共性。 结果:29项研究符合纳入标准。报告的单词错误率差异很大,从受控听写环境中的0.087到对话或多说话者场景中的超过50%。F1分数在0.416至0.856之间,反映了准确性的差异。虽然一些研究强调了文档记录时间的减少和笔记完整性的提高,但另一些研究指出编辑负担增加、成本效益不一致以及专业术语或带口音语音存在持续错误。最近基于大语言模型的方法提供了自动总结功能,但通常需要人工审核以确保临床安全性。 结论:基于人工智能的转录系统显示出改善临床文档记录的潜力,但在准确性、适应性和工作流程整合方面面临挑战。特定领域培训的改进、实时纠错以及与电子健康记录的互操作性对于其在临床实践中的有效应用至关重要。未来的研究还应关注结合大语言模型驱动的文本总结和重新利用的下一代“数字抄写员”。 临床试验编号:不适用。
BMC Med Inform Decis Mak. 2025-7-1
JBI Database System Rev Implement Rep. 2016-4
Healthcare (Basel). 2025-6-16
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2016-12-14
Cochrane Database Syst Rev. 2018-1-16
Perspect Health Inf Manag. 2024-6-1
J Med Internet Res. 2025-1-27
J Am Med Inform Assoc. 2025-2-1
J Am Med Inform Assoc. 2025-2-1
Appl Clin Inform. 2025-3
Future Healthc J. 2024-6-26