文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

间充质干细胞表面的正常应力可促进细胞外囊泡分泌和再生生物活性。

Normal stress on surface of mesenchymal stem cells boosts extracellular vesicle secretion and regenerative bioactivity.

作者信息

Bai Chengmeng, Ren Huifang, Zhang Feng, Li Dandan, Feng Qingyu, Li Ying, Chen Ting, Li Chengxu, Xiao Xuan, Zhang Hengrui, Hu Liang

机构信息

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China.

出版信息

J Nanobiotechnology. 2025 Jul 1;23(1):476. doi: 10.1186/s12951-025-03556-y.


DOI:10.1186/s12951-025-03556-y
PMID:40598526
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12210758/
Abstract

Scalable approaches for enhancing therapeutic small extracellular vesicles (sEVs) production can facilitate the transition of sEVs from bench to bedside and beyond. Here, we present a user-friendly method to manipulate the extracellular mechanical microenvironment of umbilical cord-derived mesenchymal stem cells (MSCs), a promising cell type for generating sEVs with therapeutic benefits, to boost sEV secretion and regenerative bioactivity. The bioreactor system, called the programmable controlled rotating platform (PRP), is designed to apply normal stress on cell surface through centrifugal rotation culture. Experimental analyses suggested that the PRP can promote a 4-fold sEV secretion increase without affecting cell viability and sEV size when compared to the traditional static culture condition. More importantly, PRP-induced MSC-sEVs can significantly promote epithelial cell migration in vitro and accelerate corneal wound healing in a murine model, with suppressed inflammatory responses in wound bed tissue. Further mechanistic investigations revealed that this process involves the activation of cellular transcriptional signals implicated in sEV biogenesis. Concurrently, sEV cargo undergoes remodeling to enrich regenerative and immunoregulatory functions. These findings demonstrate the efficacy of our established platform in advancing sEV production and improving clinical performance, providing a novel sEV-based mechanism for ocular treatments, including corneal epithelialization and even retinal neural regeneration.

摘要

增强治疗性小细胞外囊泡(sEVs)产量的可扩展方法能够促进sEVs从实验室到临床应用乃至更广泛领域的转化。在此,我们提出一种用户友好型方法,用于操控脐带间充质干细胞(MSCs)的细胞外机械微环境,这是一种有望产生具有治疗益处的sEVs的细胞类型,以提高sEVs的分泌及再生生物活性。该生物反应器系统称为可编程控制旋转平台(PRP),旨在通过离心旋转培养在细胞表面施加法向应力。实验分析表明,与传统静态培养条件相比,PRP可使sEVs分泌增加4倍,且不影响细胞活力和sEVs大小。更重要的是,PRP诱导的MSC-sEVs可在体外显著促进上皮细胞迁移,并在小鼠模型中加速角膜伤口愈合,同时抑制伤口床组织中的炎症反应。进一步的机制研究表明,这一过程涉及激活与sEV生物发生相关的细胞转录信号。与此同时,sEV的货物发生重塑,以丰富其再生和免疫调节功能。这些发现证明了我们建立的平台在提高sEV产量和改善临床性能方面的有效性,为眼部治疗提供了一种基于sEV的新机制,包括角膜上皮化甚至视网膜神经再生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/8e8e9325da9c/12951_2025_3556_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/fbc69026386a/12951_2025_3556_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/26ac8be899d7/12951_2025_3556_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/27b8915b6c69/12951_2025_3556_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/24df77b06c71/12951_2025_3556_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/d0d2bfc4550e/12951_2025_3556_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/8e8e9325da9c/12951_2025_3556_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/fbc69026386a/12951_2025_3556_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/26ac8be899d7/12951_2025_3556_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/27b8915b6c69/12951_2025_3556_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/24df77b06c71/12951_2025_3556_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/d0d2bfc4550e/12951_2025_3556_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4bb/12210758/8e8e9325da9c/12951_2025_3556_Fig6_HTML.jpg

相似文献

[1]
Normal stress on surface of mesenchymal stem cells boosts extracellular vesicle secretion and regenerative bioactivity.

J Nanobiotechnology. 2025-7-1

[2]
Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model.

Clin Orthop Relat Res. 2024-7-1

[3]
Cortical Actin Depolymerisation in 3D Cell Culture Enhances Extracellular Vesicle Secretion and Therapeutic Effects.

J Extracell Vesicles. 2025-6

[4]
Targeted knockdown of MSC-sEVs biogenesis regulator proteins to elucidate the mechanisms of their production: a step towards translational applications.

Cytotherapy. 2025-6

[5]
Mesenchymal stromal cells-derived extracellular vesicles in cartilage regeneration: potential and limitations.

Stem Cell Res Ther. 2025-1-23

[6]
Small extracellular vesicles derived from mesenchymal stromal cells loaded with β-nicotinamide mononucleotide activate NAD/SIRT3 signaling pathway-mediated mitochondrial autophagy to delay skin aging.

Stem Cell Res Ther. 2025-7-1

[7]
Single vesicle analysis reveals the release of tetraspanin positive extracellular vesicles into circulation with high intensity intermittent exercise.

J Physiol. 2023-11

[8]
Large-scale manufacturing of immunosuppressive extracellular vesicles for human clinical trials.

Cytotherapy. 2025-6-13

[9]
Engineered small extracellular vesicles for targeted delivery of perlecan to stabilise the blood-spinal cord barrier after spinal cord injury.

Clin Transl Med. 2025-6

[10]
Insights From Amniotic and Umbilical Cord Mesenchymal Stem Cells in Wound Healing.

J Cell Mol Med. 2025-6

引用本文的文献

[1]
Perfusion Bioreactor Culture Incorporating Mechanical Confinement Enhances Mesenchymal Stem Cell Extracellular Vesicle Production and Wound Healing Potential.

bioRxiv. 2025-8-15

本文引用的文献

[1]
Enhancing Ferroptosis-Mediated Radiosensitization Synergistic Disulfidptosis Induction.

ACS Nano. 2025-1-14

[2]
Harnessing Tumor Cell-Derived Exosomes for Immune Rejection Management in Corneal Transplantation.

Adv Sci (Weinh). 2025-1

[3]
The dysfunction of complement and coagulation in diseases: the implications for the therapeutic interventions.

MedComm (2020). 2024-10-23

[4]
Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases.

ACS Nano. 2024-8-27

[5]
3D-hUMSCs Exosomes Ameliorate Vitiligo by Simultaneously Potentiating Treg Cells-Mediated Immunosuppression and Suppressing Oxidative Stress-Induced Melanocyte Damage.

Adv Sci (Weinh). 2024-8

[6]
Shear stress and pathophysiological PI3K involvement in vascular malformations.

J Clin Invest. 2024-5-15

[7]
Clinical applications of stem cell-derived exosomes.

Signal Transduct Target Ther. 2024-1-12

[8]
Metabolic signatures of tear extracellular vesicles caused by herpes simplex keratitis.

Ocul Surf. 2024-1

[9]
Audible Acoustic Wave Promotes EV Formation and Secretion from Adherent Cancer Cells via Mechanical Stimulation.

ACS Appl Mater Interfaces. 2023-11-22

[10]
Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis.

Burns Trauma. 2023-10-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索