Suppr超能文献

基于统计和深度学习的多组学整合用于乳腺癌亚型分类的比较分析

Comparative analysis of statistical and deep learning-based multi-omics integration for breast cancer subtype classification.

作者信息

Omran Mahmoud M, Emam Mohamed, Gamaleldin Mariam, Abushady Asmaa M, Elattar Mustafa A, El-Hadidi Mohamed

机构信息

Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.

School of Information Technology and Computer Science, Nile University, Giza, Egypt.

出版信息

J Transl Med. 2025 Jul 1;23(1):709. doi: 10.1186/s12967-025-06662-5.

Abstract

BACKGROUND

Breast cancer (BC) is a critical cause of cancer-related death globally. The heterogeneity of BC subtypes poses challenges in understanding molecular mechanisms, early diagnosis, and disease management. Recent studies suggest that integrating multi-omics layers can significantly enhance BC subtype identification. However, evaluating different multi-omics integration methods for BC subtyping remains ambiguous.

METHODS

In this study, we conducted a multi-omics integration analysis on 960 BC patient samples, incorporating three omics layers: Host transcriptomics, epigenomics, and shotgun microbiome. We compared two integration approaches the statistical-based approach (MOFA+) and a deep learning-based approach (MOGCN) for this integration. We evaluated both methods using complementary evaluation criteria. First, we assessed the ability of selected features to discriminate between BC subtypes using both linear and nonlinear classification models. Second, we analyzed the biological relevance of the selected features to key BC pathways, focusing on transcriptomics-driven insights.

RESULTS

Our results showed that MOFA+ outperformed MOGCN in feature selection, achieving the highest F1 score (0.75) in the nonlinear classification model, with MOFA+ also identifying 121 relevant pathways compared to 100 from MOGCN. Notably, one of the key pathways Fc gamma R-mediated phagocytosis and the SNARE pathway was implicated, offering insights into immune responses and tumor progression.

CONCLUSION

These findings suggest that MOFA+ is a more effective unsupervised tool for feature selection in BC subtyping. Our study underscores the potential of multi-omics integration to improve BC subtype prediction and provides critical insights for advancing personalized medicine in BC.

摘要

背景

乳腺癌(BC)是全球癌症相关死亡的一个关键原因。BC亚型的异质性在理解分子机制、早期诊断和疾病管理方面带来了挑战。最近的研究表明,整合多组学层面可以显著提高BC亚型的识别。然而,评估用于BC亚型分类的不同多组学整合方法仍然不明确。

方法

在本研究中,我们对960例BC患者样本进行了多组学整合分析,纳入了三个组学层面:宿主转录组学、表观基因组学和鸟枪法微生物组学。我们比较了两种整合方法,即基于统计的方法(MOFA+)和基于深度学习的方法(MOGCN)进行这种整合。我们使用互补的评估标准评估这两种方法。首先,我们使用线性和非线性分类模型评估所选特征区分BC亚型的能力。其次,我们分析所选特征与关键BC途径的生物学相关性,重点关注转录组学驱动的见解。

结果

我们的结果表明,在特征选择方面,MOFA+优于MOGCN,在非线性分类模型中获得了最高的F1分数(0.75),与MOGCN识别的100条相关途径相比,MOFA+还识别出121条相关途径。值得注意的是,关键途径之一FcγR介导的吞噬作用和SNARE途径被牵连,为免疫反应和肿瘤进展提供了见解。

结论

这些发现表明,MOFA+是一种在BC亚型分类中更有效的无监督特征选择工具。我们的研究强调了多组学整合在改善BC亚型预测方面的潜力,并为推进BC的个性化医学提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080c/12210783/63d19129ac4f/12967_2025_6662_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验