Suresh Sevanthy, Venkatesan Vigneshwaran, Azhagiri Manoj Kumar K, Mahalingam Gokulnath, Chandraprabha Prathibha Babu, Murugesan Mohankumar K, Kumar Sanjay, Thangavel Saravanabhavan, Marepally Srujan
Centre for Stem Cell Research (a unit of BRIC-inStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India.
Manipal Academy of Higher Education, Manipal, Karnataka, India.
Stem Cell Res Ther. 2025 Jul 1;16(1):335. doi: 10.1186/s13287-025-04474-4.
Hematopoietic Stem and Progenitor Cells (HSPCs) gene therapy has shown significant progress, with commercial approval for at least four distinct haematological disorders, and poised for a rapid expansion in the upcoming years. Despite these advancements, the ex vivo culture of HSPCs continues to present significant challenges. The stress induced by ex vivo culture can negatively impact transplantation outcomes, while the need for exogenous cytokine supplementation contributes to the high costs associated with gene therapy products.
We developed genetically modified human bone marrow MSCs (GM-MSCs) secreting cytokines such as Stem cell factor (SCF), Thrombopoietin (TPO), FMS-like tyrosine kinase-3-ligand (FLT3L), and Interleukin-3 (IL3), closely resembling bone marrow cellular niche to augment HSPCs culture.
HSPCs proliferate on GM-MSCs akin to standard conditions, devoid of external cytokine supplementation and these HSPCs retain their stem cell characteristics, colony-forming potential, stemness gene signatures, and capacity for long-term multilineage reconstitution in NBSGW mice. We demonstrate that our biomimetic feeder layer supports and alleviates stress associated with Homology Directed Repair (HDR) mediated gene-editing of HSPCs for fetal haemoglobin reactivation for a potential application in β-hemoglobinopathies gene therapy.
Our GM-MSCs offer a compelling alternative to traditional cytokine supplementation by establishing a biomimetic bone marrow niche that fosters HSPC expansion while maintaining their stemness. These findings underscore the potential of engineered MSCs to revolutionize ex vivo HSPCs culture, ultimately enhancing their therapeutic value for gene therapy applications.
造血干细胞和祖细胞(HSPCs)基因治疗已取得显著进展,至少有四种不同的血液系统疾病获得了商业批准,并且在未来几年有望迅速扩展。尽管取得了这些进展,但HSPCs的体外培养仍然面临重大挑战。体外培养所诱导的应激会对移植结果产生负面影响,而外源性细胞因子补充的需求则导致了与基因治疗产品相关的高成本。
我们开发了分泌干细胞因子(SCF)、血小板生成素(TPO)、FMS样酪氨酸激酶-3配体(FLT3L)和白细胞介素-3(IL3)等细胞因子的基因修饰人骨髓间充质干细胞(GM-MSCs),其与骨髓细胞龛极为相似,以增强HSPCs的培养。
HSPCs在GM-MSCs上增殖,类似于标准条件,无需外部细胞因子补充,并且这些HSPCs保留了它们的干细胞特性、集落形成潜力、干性基因特征以及在NBSGW小鼠中进行长期多谱系重建的能力。我们证明,我们的仿生饲养层支持并减轻了与同源定向修复(HDR)介导的HSPCs基因编辑相关的应激,用于胎儿血红蛋白激活,潜在应用于β-血红蛋白病基因治疗。
我们的GM-MSCs通过建立一个仿生骨髓龛提供了一种有吸引力的传统细胞因子补充替代方案,该龛促进HSPCs扩增,同时保持其干性。这些发现强调了工程化间充质干细胞在彻底改变体外HSPCs培养方面的潜力,最终提高其在基因治疗应用中的治疗价值。