关于单链结合蛋白(SSB)和复制蛋白A(RPA)的直接DNA和RNA链转移以及动态蛋白质交换的机制性见解。
Mechanistic insights into direct DNA and RNA strand transfer and dynamic protein exchange of SSB and RPA.
作者信息
Paul Tapas, Lee I-Ren, Pangeni Sushil, Rashid Fahad, Yang Olivia, Antony Edwin, Berger James M, Myong Sua, Ha Taekjip
机构信息
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States.
Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States.
出版信息
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf642.
Single-stranded DNA-binding proteins (SSBs) are essential for genome stability, facilitating replication, repair, and recombination by binding single-stranded DNA (ssDNA), recruiting other proteins, and dynamically relocating in response to cellular demands. Using single-molecule fluorescence resonance energy transfer assays, we elucidated the mechanisms underlying direct strand transfer from one locale to another, protein exchange, and RNA interactions at high resolution. Both bacterial SSB and eukaryotic replication protein A (RPA) exhibited direct strand transfer to competing ssDNA, with rates strongly influenced by ssDNA length. Strand transfer proceeded through multiple failed attempts before a successful transfer, forming a ternary intermediate complex with transient interactions, supporting a direct transfer mechanism. Both proteins efficiently exchanged DNA-bound counterparts with freely diffusing molecules, while hetero-protein exchange revealed that SSB and RPA could replace each other on ssDNA, indicating that protein exchange does not require specific protein-protein interactions. Additionally, both proteins bound RNA and underwent strand transfer to competing RNA, with RPA demonstrating faster RNA transfer kinetics. Competitive binding assays confirmed a strong preference for DNA over RNA. These findings provide critical insights into the dynamic behavior of SSB and RPA in nucleic acid interactions, advancing our understanding of their essential roles in genome stability, regulating RNA metabolism, and orchestrating nucleic acid processes.
单链DNA结合蛋白(SSB)对基因组稳定性至关重要,通过结合单链DNA(ssDNA)、招募其他蛋白质并根据细胞需求动态重新定位来促进复制、修复和重组。使用单分子荧光共振能量转移测定法,我们在高分辨率下阐明了从一个位点直接链转移到另一个位点、蛋白质交换和RNA相互作用的潜在机制。细菌SSB和真核复制蛋白A(RPA)都表现出向竞争性ssDNA的直接链转移,其速率受ssDNA长度的强烈影响。链转移在成功转移之前经历了多次失败尝试,形成了具有短暂相互作用的三元中间复合物,支持直接转移机制。两种蛋白质都能有效地与自由扩散的分子交换与DNA结合的对应物,而异源蛋白质交换表明SSB和RPA可以在ssDNA上相互取代,这表明蛋白质交换不需要特定的蛋白质-蛋白质相互作用。此外,两种蛋白质都能结合RNA并向竞争性RNA进行链转移,RPA表现出更快的RNA转移动力学。竞争性结合测定证实了对DNA的强烈偏好超过RNA。这些发现为SSB和RPA在核酸相互作用中的动态行为提供了关键见解,推进了我们对它们在基因组稳定性、调节RNA代谢和协调核酸过程中的重要作用的理解。