Lee Sojeong, Nyamzaya Khulan, Han Jueun, Song Yejin, Lee Jihee, Jo Jung Hyun, Bang Seungmin, Lim Eun-Kyung, Haam Seungjoo, Kim Eunjung
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
Adv Healthc Mater. 2025 Jul 2:e2500485. doi: 10.1002/adhm.202500485.
Membrane fusion, a foundational process in biological systems, has inspired the development of nanomaterials with transformative potential in biomedical applications, particularly in the diagnosis of infectious diseases and cancer. By emulating nature's intricate fusion mechanisms, these biomimetic nanomaterials offer unparalleled sensitivity, specificity, and versatility for detecting disease-related biomarkers. Recent advancements have focused on engineering lipid nanoparticles that mimic viruses or exosomes, incorporating functionalization and signal amplification systems to enable targeted biomarker recognition and precise molecular interactions. Fusion-inspired nanomaterials have emerged as powerful tools for rapid viral detection, exosome-based liquid biopsies, and high-throughput disease monitoring. Moreover, the incorporation of external stimuli-such as pH, ions, enzymes, and light-further enhances the spatiotemporal control of fusion events, paving the way for highly selective and responsive diagnostic tools. Despite remarkable progress, critical challenges remain in optimizing the stability, scalability, and precise control of these nanomaterials for clinical translation. This review provides a comprehensive overview of the principles underlying membrane fusion-inspired nanomaterials, highlighting recent advancements, key challenges, and future directions in the field. As the field continues to evolve, these bioinspired systems hold immense promise for advancing next-generation diagnostics and personalized medicine, offering a way for more accurate, efficient, and accessible healthcare solutions.
膜融合是生物系统中的一个基础过程,它激发了具有生物医学应用变革潜力的纳米材料的发展,特别是在传染病和癌症的诊断方面。通过模仿自然界复杂的融合机制,这些仿生纳米材料在检测疾病相关生物标志物方面具有无与伦比的灵敏度、特异性和多功能性。最近的进展集中在设计模仿病毒或外泌体的脂质纳米颗粒,纳入功能化和信号放大系统以实现靶向生物标志物识别和精确的分子相互作用。受融合启发的纳米材料已成为快速病毒检测、基于外泌体的液体活检和高通量疾病监测的有力工具。此外,引入外部刺激(如pH值、离子、酶和光)进一步增强了融合事件的时空控制,为高选择性和响应性诊断工具铺平了道路。尽管取得了显著进展,但在优化这些纳米材料的稳定性、可扩展性和精确控制以实现临床转化方面仍存在关键挑战。本综述全面概述了受膜融合启发的纳米材料的基本原理,突出了该领域的最新进展、关键挑战和未来方向。随着该领域的不断发展,这些受生物启发的系统在推进下一代诊断和个性化医学方面具有巨大潜力,为更准确、高效和便捷的医疗保健解决方案提供了一条途径。