Suppr超能文献

接下来谁发言?利用谋杀之谜游戏中轮流发言机制的多方人工智能讨论。

Who speaks next? Multi-party AI discussion leveraging the systematics of turn-taking in Murder Mystery games.

作者信息

Nonomura Ryota, Mori Hiroki

机构信息

School of Engineering, Utsunomiya University, Utsunomiya, Japan.

出版信息

Front Artif Intell. 2025 Jun 17;8:1582287. doi: 10.3389/frai.2025.1582287. eCollection 2025.

Abstract

INTRODUCTION

Multi-agent systems utilizing large language models (LLMs) have shown great promise in achieving natural dialogue. However, smooth dialogue control and autonomous decision making among agents still remain challenging.

METHODS

In this study, we focus on conversational norms such as adjacency pairs and turn-taking found in conversation analysis and propose a new framework called "Murder Mystery Agents" that applies these norms to AI agents' dialogue control. As an evaluation target, we employed the "Murder Mystery" game, a reasoning-type table-top role-playing game that requires complex social reasoning and information manipulation. The proposed framework integrates next speaker selection based on adjacency pairs and a self-selection mechanism that takes agents' internal states into account to achieve more natural and strategic dialogue.

RESULTS

To verify the effectiveness of this new approach, we analyzed utterances that led to dialogue breakdowns and conducted automatic evaluation using LLMs, as well as human evaluation using evaluation criteria developed for the Murder Mystery game. Experimental results showed that the implementation of the next speaker selection mechanism significantly reduced dialogue breakdowns and improved the ability of agents to share information and perform logical reasoning.

DISCUSSION

The results of this study demonstrate that the systematics of turn-taking in human conversation are also effective in controlling dialogue among AI agents, and provide design guidelines for more advanced multi-agent dialogue systems.

摘要

引言

利用大语言模型(LLMs)的多智能体系统在实现自然对话方面显示出了巨大的潜力。然而,智能体之间流畅的对话控制和自主决策仍然具有挑战性。

方法

在本研究中,我们关注对话分析中发现的诸如相邻对和话轮转换等对话规范,并提出了一个名为“谋杀之谜智能体”的新框架,该框架将这些规范应用于人工智能智能体的对话控制。作为评估目标,我们采用了“谋杀之谜”游戏,这是一种推理型桌面角色扮演游戏,需要复杂的社会推理和信息操纵。所提出的框架整合了基于相邻对的下一个说话者选择和一个考虑智能体内部状态的自我选择机制,以实现更自然和策略性的对话。

结果

为了验证这种新方法的有效性,我们分析了导致对话中断的话语,并使用大语言模型进行自动评估,以及使用为谋杀之谜游戏制定的评估标准进行人工评估。实验结果表明,下一个说话者选择机制的实施显著减少了对话中断,并提高了智能体共享信息和进行逻辑推理的能力。

讨论

本研究结果表明,人类对话中话轮转换的系统性在控制人工智能智能体之间的对话方面也很有效,并为更先进的多智能体对话系统提供了设计指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1337/12209177/4f9ad8573ea5/frai-08-1582287-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验