Surendhar S, Peter X T, Sivaprakash P, Malar P, Martin Britto Dhas S A, Arumugam S, Kim Ikhyun
Department of Mechanical and Engineering, Keimyung University Daegu 42601 Republic of Korea
Centre for High-Pressure Research, School of Physics, Bharathidasan University Tiruchirappalli 620024 India.
RSC Adv. 2025 Jun 30;15(28):22432-22448. doi: 10.1039/d5ra03559g.
In the present investigation, we systematically investigate how acoustic shock waves induce a phase transition from FeS to α-FeO and how this transition influences the material's structural, morphological, optical, and photocatalytic properties. The findings from X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet differential reflectance spectroscopy (UV-DRS), and X-ray photoelectron spectroscopy (XPS) studies unequivocally demonstrate a complete phase transition from FeS to α-FeO at 600 shock pulses. The control sample has an uneven morphology. The material exhibits moderate morphological changes but maintains its fundamental FeS phase after 400 shock pulses. On the other hand, the material undergoes a notable structural and morphological change at 600 shock pulses, assuming a distinct needle-like shape that is suggestive of phase transition and improved crystallinity. UV-DRS analysis reveals an increase in optical reflectance and a noticeable blue shift in the energy band gap under 600-shock conditions, further supporting the formation of a new phase with altered electronic structure. Density Functional Theory (DFT) calculations further support these findings, revealing a reduction in the electronic density of states (DOS) near the Fermi level upon phase transition, indicative of the enhanced charge separation crucial for improved photocatalytic performance. As a result, for FeS subjected to 600 shock pulses, transition to α-FeO exhibits superior photocatalytic efficiency and reaction rates compared to the control and other shock-treated samples.
在本研究中,我们系统地研究了声冲击波如何诱导FeS向α-FeO的相变,以及这种转变如何影响材料的结构、形态、光学和光催化性能。X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外差分反射光谱(UV-DRS)和X射线光电子能谱(XPS)研究结果明确表明,在600次冲击脉冲下,FeS完全转变为α-FeO。对照样品的形态不均匀。该材料在400次冲击脉冲后呈现出适度的形态变化,但仍保持其基本的FeS相。另一方面,该材料在600次冲击脉冲时发生了显著的结构和形态变化,呈现出独特的针状形状,这表明发生了相变且结晶度提高。UV-DRS分析表明,在600次冲击条件下,光学反射率增加,能带隙出现明显的蓝移,进一步支持了具有改变的电子结构的新相的形成。密度泛函理论(DFT)计算进一步支持了这些发现,揭示了相变时费米能级附近的电子态密度(DOS)降低,这表明增强的电荷分离对提高光催化性能至关重要。因此,对于经受600次冲击脉冲的FeS,与对照样品和其他冲击处理样品相比,向α-FeO的转变表现出优异的光催化效率和反应速率。