Suppr超能文献

远距离电子极化铁氮催化剂将聚合驱动的酚类污染物去除导向可持续的碳封存。

Long-Range Electronically Polarized Fe-N Catalysts Redirect Polymerization-Driven Phenolic Pollutant Removal Toward Sustainable Carbon Sequestration.

作者信息

Deng Yanchun, Zhou Yingtang, Song Zilong, Yang Xin

机构信息

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, P.R. China.

Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202509493. doi: 10.1002/anie.202509493. Epub 2025 Jul 9.

Abstract

A sustainable strategy for simultaneous pollutant removal and carbon sequestration is offered by the peroxymonosulfate (PMS)-mediated electron transfer mechanism. However, it remains challenging to achieve catalysts with durable and high activity. A novel catalyst design strategy leveraging boron doping that induces long-range electronic polarization to precisely modulate PMS complexation dynamics on single-atom catalysts (SACs) is proposed in this study. It is demonstrated that B-doping induces asymmetric Fe-N coordination at the atomic iron centers (Fe-BNC) while creating electron-enriched carbon auxiliary sites. The electron distribution is synergistically optimized by this dual-site configuration through lowering the d-band center and establishing a polarized charge transfer pathway. Complexes with enhanced oxidation potential are generated by the engineered Fe-BNC/PMS, redirecting bisphenol A degradation from conventional radical-mediated mineralization to an interfacial polymerization pathway via outer-sphere electron transfer. Remarkably, >3 times higher total organic carbon (TOC) removal activity compared to state-of-the-art catalysts and 4 orders of magnitude higher reactivity than conventional carbon nitride (CN) catalyst are exhibited by the optimized catalyst. Excellent operational stability (>1700 h continuous operation) with >120 L actual wastewater treatment capacity is demonstrated by practical implementation in a continuous-flow microreactor. This work advances electronic modulation strategies for sustainable water purification technologies.

摘要

过氧单硫酸盐(PMS)介导的电子转移机制为同时去除污染物和碳固存提供了一种可持续策略。然而,制备具有持久高活性的催化剂仍然具有挑战性。本研究提出了一种新颖的催化剂设计策略,即利用硼掺杂诱导长程电子极化,以精确调节单原子催化剂(SACs)上PMS的络合动力学。结果表明,硼掺杂在原子铁中心(Fe-BNC)诱导不对称的Fe-N配位,同时产生富电子的碳辅助位点。通过降低d带中心并建立极化电荷转移途径,这种双位点结构协同优化了电子分布。工程化的Fe-BNC/PMS生成具有增强氧化电位的络合物,将双酚A的降解从传统的自由基介导矿化转变为通过外层电子转移的界面聚合途径。值得注意的是,优化后的催化剂表现出比现有催化剂高出3倍以上的总有机碳(TOC)去除活性,比传统氮化碳(CN)催化剂高4个数量级的反应活性。在连续流微反应器中的实际应用证明了其具有出色的操作稳定性(>1700小时连续运行)和>120升的实际废水处理能力。这项工作推动了可持续水净化技术的电子调制策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验