Li Ke, Yan Zidi, Yang Shuo, Xin Weiwen, Li Xuanze, Wu Yuge, Zou Kehan, Huang Dehua, Ling Haoyang, Liu Tianchi, Zhang Zhehua, Kong Xiang-Yu, Jiang Lei, Wen Liping
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
J Am Chem Soc. 2025 Jul 16;147(28):24708-24718. doi: 10.1021/jacs.5c06122. Epub 2025 Jul 2.
Emerging heterogeneous nanofluidics are promising alternatives for harvesting sustainable and clean osmotic energy, primarily due to their capability to reduce Gibbs free energy dissipation. However, the misalignment of nanochannels across different layers in heterogeneous nanofluidics results in low ion flux and high transport resistance, thereby limiting their practical applications. Here, we develop a continuous growth strategy to construct heterogeneous metal-organic framework nanofluidics (H-CuMOF-NMs) that contribute to an enhanced ion flux of 1.13 × 10 ions s. The channel-structure-matched nanochannels substantially reduce the transport resistance for Na ions to selectively pass through heterogeneous interfaces, as corroborated by theoretical simulations. Consequently, an impressive output power density of 12.1 W m is achieved by mixing natural seawater and river water. Large-scale H-CuMOF-NMs measuring 20 × 40 cm are successfully manufactured as commercial membrane stacks capable of continuously powering electrical devices. The proposed nanofluidics show significant potential in separation processes and energy conversion.
新兴的异质纳米流体学是获取可持续和清洁能源的有前途的替代方案,主要是因为它们能够减少吉布斯自由能耗散。然而,异质纳米流体学中不同层之间纳米通道的不对准导致离子通量低和传输阻力高,从而限制了它们的实际应用。在这里,我们开发了一种连续生长策略来构建异质金属有机框架纳米流体学(H-CuMOF-NMs),其有助于增强离子通量至1.13×10离子/秒。通道结构匹配的纳米通道大大降低了钠离子选择性穿过异质界面的传输阻力,这得到了理论模拟的证实。因此,通过混合天然海水和河水实现了令人印象深刻的12.1W/m²的输出功率密度。尺寸为20×40厘米的大规模H-CuMOF-NMs被成功制造为能够持续为电气设备供电的商业膜堆。所提出的纳米流体学在分离过程和能量转换中显示出巨大潜力。