Lee Minsup, Wood Bo J, Jeong Hyeon Hak, Nam Hyung W, Keller Courtney M, Lee Bonggi, Kim Jae-Il, Murnane Kevin S, Goeders Nicholas E, Harris Norman R
Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, United States.
Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Shreveport, Shreveport, Louisiana, United States.
Invest Ophthalmol Vis Sci. 2025 Jul 1;66(9):8. doi: 10.1167/iovs.66.9.8.
Given the evidence of a link between methamphetamine (METH) exposure and retinal vascular abnormalities, this study aims to investigate the molecular and cellular mechanisms underlying METH-induced retinal angiogenesis using a unique self-administration rat model and primary rat retinal microvascular endothelial cells (RRMECs).
To model the impact of compulsive use of METH, rats underwent an 8-week METH long-access self-administration protocol, with retinal tissues analyzed using whole retinal flatmount imaging and vascular network quantification. Proteomic analysis via liquid chromatography/tandem mass spectrometry identified differentially expressed proteins, while RRMECs were treated with METH to assess molecular changes through immunoblotting and quantitative RT-PCR.
Consistent with compulsive use of METH in humans and our previous experience with this model, rats self-administered high levels of METH. METH self-administration elevated dopamine levels in the vitreous humor and increased vascular density in both superficial and deep capillary layers across central, mid-peripheral, and peripheral retina regions. Proteomic analysis revealed 148 differentially expressed retinal proteins, with gene ontology enrichment highlighting pathways related to abiotic stimuli, hypoxia, and ischemia. Increased hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor a (VEGFa) expression confirmed a hypoxia-driven angiogenesis process, further supported by in vitro experiments showing enhanced endothelial cell proliferation and HIF-1α/VEGFa expression. Additionally, TAAR-1 upregulation in both the retina and endothelial cells was observed, with TAAR-1 antagonism reducing METH-induced endothelial cell proliferation and modulating HIF-1α/VEGFa signaling.
METH self-administration leads to significant retinal vascular changes and angiogenesis, driven by upregulation of hypoxia-related pathways. TAAR-1 plays a critical role in endothelial cell proliferation through the HIF-1α/VEGFa pathway, potentially contributing to pathological retinal conditions.
鉴于有证据表明甲基苯丙胺(METH)暴露与视网膜血管异常之间存在联系,本研究旨在使用独特的自我给药大鼠模型和原代大鼠视网膜微血管内皮细胞(RRMECs),研究METH诱导视网膜血管生成的分子和细胞机制。
为模拟强迫使用METH的影响,大鼠接受为期8周的METH长期自我给药方案,使用全视网膜平铺成像和血管网络定量分析视网膜组织。通过液相色谱/串联质谱进行蛋白质组分析,鉴定差异表达的蛋白质,同时用METH处理RRMECs,通过免疫印迹和定量RT-PCR评估分子变化。
与人类强迫使用METH以及我们此前使用该模型的经验一致,大鼠自我给药了高水平的METH。METH自我给药提高了玻璃体液中的多巴胺水平,并增加了中央、中周和外周视网膜区域浅层和深层毛细血管层的血管密度。蛋白质组分析揭示了148种差异表达的视网膜蛋白质,基因本体富集突出了与非生物刺激、缺氧和缺血相关的途径。缺氧诱导因子-1α(HIF-1α)和血管内皮生长因子a(VEGFa)表达增加证实了缺氧驱动的血管生成过程,体外实验显示内皮细胞增殖增强以及HIF-1α/VEGFa表达增加进一步支持了这一点。此外,在视网膜和内皮细胞中均观察到TAAR-1上调,TAAR-1拮抗作用减少了METH诱导的内皮细胞增殖并调节HIF-1α/VEGFa信号传导。
METH自我给药导致显著的视网膜血管变化和血管生成,这是由缺氧相关途径的上调驱动的。TAAR-1通过HIF-1α/VEGFa途径在内皮细胞增殖中起关键作用,可能导致病理性视网膜疾病。