Yao Jiayi, Wang Haowei, Fang Jing, Shan Shengdao, Joseph Stephen D, van Zwieten Lukas, Zhu Kecheng, Chen Dingjiang, Jia Hanzhong
School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Hangzhou 310023, China.
Environ Sci Technol. 2025 Jul 15;59(27):13551-13565. doi: 10.1021/acs.est.5c00581. Epub 2025 Jul 2.
Reactive oxygen species (ROS), including superoxide radical (O), hydrogen peroxide (HO), hydroxyl radical (OH), and singlet oxygen (O), are commonly present in soil and sediment, playing a crucial role in the nutrient biogeochemical cycle, pollutant transformation, and microbial ecology. Previous reviews mainly emphasized ROS toxicity and Fenton chemistry-related reactions, neglecting a comprehensive understanding of ROS distribution and hotspots, formation mechanisms, and ecological effects. Here, the most advanced and detection methods of ROS in soil and sediment are first summarized to address these gaps. ROS hotspots are identified as active microinterfaces and oxic-anoxic fluctuation zones by graphing the distribution of ROS in soil and sediment. Second, ROS formation processes and mechanisms are outlined, which involve natural organic matter (NOM) and biochar (acting as electron shuttle, geobattery, geoconductor, and photosensitizer), transition metals (mainly via Fenton and Fenton-like reactions), and microbes (producing extracellular ROS and mediating NOM decomposition or metal oxides reduction). Further, as for the ecological effects of ROS, they impact the microbial community, nutrient cycle, and the transformation of organic pollutants and multivalence heavy metals. Finally, we call for more future research that focuses on developing rapid and ROS detection techniques, elucidating the interactive ROS formation mechanisms by trace environmental components, analyzing ecological consequences in ROS hotspots, and practically applying ROS in soil and sediment. A comprehensive understanding of the ROS formation process in soil and sediment is crucial for the study of soil carbon sequestration and natural remediation processes in the context of global green and low-carbon development.
活性氧(ROS),包括超氧阴离子自由基(O)、过氧化氢(HO)、羟基自由基(OH)和单线态氧(O),普遍存在于土壤和沉积物中,在养分生物地球化学循环、污染物转化和微生物生态学中发挥着关键作用。以往的综述主要强调ROS的毒性和与芬顿化学相关的反应,而忽略了对ROS分布与热点、形成机制及生态效应的全面理解。在此,首先总结了土壤和沉积物中ROS最先进的检测方法,以弥补这些空白。通过绘制土壤和沉积物中ROS的分布图,将ROS热点识别为活性微界面和有氧-缺氧波动带。其次,概述了ROS的形成过程和机制,这涉及天然有机物(NOM)和生物炭(充当电子穿梭体、地电池、地导体和光敏剂)、过渡金属(主要通过芬顿和类芬顿反应)以及微生物(产生细胞外ROS并介导NOM分解或金属氧化物还原)。此外,关于ROS的生态效应,它们会影响微生物群落、养分循环以及有机污染物和多价重金属的转化。最后,我们呼吁未来开展更多研究,重点是开发快速的ROS检测技术,阐明微量环境成分的ROS相互作用形成机制,分析ROS热点中的生态后果,以及将ROS实际应用于土壤和沉积物。在全球绿色低碳发展背景下,全面了解土壤和沉积物中ROS的形成过程对于土壤碳固存和自然修复过程的研究至关重要。