Suppr超能文献

异养原核生物在硫氧化中被忽视的作用使渤海沉积物成为硫化氢的充足汇。

Overlooked role of heterotrophic prokaryotes in sulfur oxidation makes the sediment of the Bohai Sea a sufficient sink of hydrogen sulfide.

作者信息

Chen Zhiyi, Xun Luying, Xia Yongzhen, Gong Xianzhe

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China.

出版信息

mBio. 2025 Jul 7:e0172225. doi: 10.1128/mbio.01722-25.

Abstract

Marine sediments are the active sites for the biogeochemical cycling of sulfur. Sulfate is used as a major terminal electron acceptor for the anaerobic oxidation of organic compounds in deep sediments, and the produced sulfide is normally oxidized back to sulfate in upper sediments. However, it is unclear which microorganisms, metabolic pathways, and enzymes are mainly involved in oxidation. Here, we used metagenomics, metatranscriptomics, and the testing of sulfide, thiosulfate, and sulfite oxidation in sediment samples to figure out how sulfide is oxidized in the Bohai Sea sediments. Surprisingly, sulfur oxidation is widespread in the microbial community (>67.1%) of mostly heterotrophic prokaryotes across 44 phyla, dominated by Proteobacteria. Known chemolithotrophic sulfur oxidizers were absent. The prevalent sulfur-oxidizing pathway was sulfide to zerovalent sulfur, sulfite, and then sulfate. Thiosulfate is not a major metabolic intermediate. Genes encoding sulfide oxidation ( and ), zerovalent sulfur oxidation (, , and ), and sulfite oxidation (/) were abundant and upregulated after adding NaHS. Thiosulfate, which is formed between the reaction of zerovalent sulfur and sulfite, was only slowly oxidized, which was consistent with the lack of key genes encoding for direct oxidation of thiosulfate to sulfate. The findings indicate how sulfur is oxidized in the Bohai Sea sediments. The common participation in sulfur oxidation by most heterotrophic prokaryotes results in the effective oxidation of sulfide in the surface sediment, blocking the release of hydrogen sulfide into the water column.IMPORTANCESulfur cycling is tightly interwoven with other crucial element cycles, including carbon, nitrogen, and iron in marine sediments. Sulfate is the most abundant electron acceptor in marine sediments, and sulfate reduction generates a large amount of sulfide. The majority of sulfide is oxidized to sulfate via abiotic or biological transformations, mainly by sulfur oxidizers with different redox states. However, autotrophic sulfur oxidizers, considered key players for sulfur oxidation, are in low abundance in the sediment, limiting our understanding of the pivotal biogeochemical process. This study shows the prevalent distribution of sulfur oxidation among the microbial community and emphasizes the importance of heterotrophic sulfur oxidation in sediments. It evidences the importance of previously overlooked key enzymes for elemental sulfur oxidation and supports that thiosulfate is not the major intermediate during sulfur oxidation. Understanding these key processes is crucial for elucidating biogeochemical processes in marine sediments.

摘要

海洋沉积物是硫生物地球化学循环的活跃场所。硫酸根被用作深层沉积物中有机化合物厌氧氧化的主要终端电子受体,产生的硫化物通常在上层沉积物中被重新氧化为硫酸根。然而,目前尚不清楚主要是哪些微生物、代谢途径和酶参与了这一氧化过程。在此,我们利用宏基因组学、宏转录组学以及对沉积物样本中硫化物、硫代硫酸盐和亚硫酸盐氧化的测试,来弄清楚渤海沉积物中硫化物是如何被氧化的。令人惊讶的是,硫氧化在跨越44个门的大多数异养原核生物的微生物群落中广泛存在(>67.1%),以变形菌门为主。已知的化能自养硫氧化菌并不存在。普遍存在的硫氧化途径是从硫化物到零价硫、亚硫酸盐,然后再到硫酸根。硫代硫酸盐不是主要的代谢中间产物。编码硫化物氧化( 和 )、零价硫氧化( 、 和 )以及亚硫酸盐氧化(/)的基因在添加NaHS后大量存在且表达上调。零价硫与亚硫酸盐反应生成的硫代硫酸盐仅被缓慢氧化,这与缺乏编码硫代硫酸盐直接氧化为硫酸根的关键基因是一致的。这些发现揭示了渤海沉积物中硫的氧化方式。大多数异养原核生物对硫氧化的共同参与导致了表层沉积物中硫化物的有效氧化,阻止了硫化氢释放到水柱中。

重要性

硫循环与海洋沉积物中的其他关键元素循环紧密交织,包括碳、氮和铁。硫酸根是海洋沉积物中最丰富的电子受体,硫酸盐还原会产生大量硫化物。大多数硫化物通过非生物或生物转化被氧化为硫酸根,主要是由具有不同氧化还原状态的硫氧化菌进行。然而,被认为是硫氧化关键参与者的自养硫氧化菌在沉积物中的丰度较低,这限制了我们对这一关键生物地球化学过程的理解。本研究展示了硫氧化在微生物群落中的普遍分布,并强调了沉积物中异养硫氧化的重要性。它证明了先前被忽视的元素硫氧化关键酶的重要性,并支持硫代硫酸盐不是硫氧化过程中的主要中间产物。理解这些关键过程对于阐明海洋沉积物中的生物地球化学过程至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验