Zhu Qiping, Qin Zuzeng, Lu Fenglai, Li Dianpeng
Guangxi Institute of Botany, Chinese Academy of Sciences, No. 85 Yanshan Town, Yanshan District, Guilin 541006, People's Republic of China.
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
Inorg Chem. 2025 Jul 21;64(28):14304-14312. doi: 10.1021/acs.inorgchem.5c01506. Epub 2025 Jul 2.
Density functional theory (DFT) calculations were employed to elucidate the mechanistic pathways of hydrogen activation and CO addition mediated by a novel iridium catalyst. The results demonstrate that hydrogen activation proceeds efficiently an oxidative addition mechanism at the Ir(I) center, followed by ligand-assisted heterolysis. Detailed distortion-interaction and energy decomposition analyses indicate that the oxidative addition at the Ir(I) center exhibits stronger orbital interactions, which are key determinants of the selectivity in hydrogen activation. In the CO addition reaction, the trihydride complex reacts with DBU, inducing a redox transition from Ir(III) to an Ir(I) dihydride intermediate, which undergoes ligand-assisted stepwise hydride transfer. This dynamic reduction pathway significantly lowers the reaction barrier and facilitates hydride transfer. Compared to the direct hydrogenation pathway involving Ir(III) species, this route exhibits a substantially lower energy barrier. Energy decomposition and noncovalent interaction analyses further reveal that the reduced Pauli repulsion in the Ir(I)-centered pathway is a critical factor contributing to its lower activation energy and higher selectivity. These findings highlight the significance of the Ir(I)/Ir(III) dynamic redox transition in catalytic processes, providing valuable theoretical insights for the development of efficient catalysts for hydrogen activation and CO conversion.
采用密度泛函理论(DFT)计算来阐明一种新型铱催化剂介导的氢活化和一氧化碳加成的反应机理。结果表明,氢活化在Ir(I)中心通过氧化加成机理高效进行,随后是配体辅助的异裂。详细的畸变-相互作用和能量分解分析表明,Ir(I)中心的氧化加成表现出更强的轨道相互作用,这是氢活化选择性的关键决定因素。在一氧化碳加成反应中,三氢化物配合物与DBU反应,引发从Ir(III)到Ir(I)二氢化物中间体的氧化还原转变,该中间体经历配体辅助的逐步氢化物转移。这种动态还原途径显著降低了反应势垒并促进了氢化物转移。与涉及Ir(III)物种的直接氢化途径相比,该途径表现出低得多的能垒。能量分解和非共价相互作用分析进一步表明,以Ir(I)为中心的途径中降低的泡利排斥是其较低活化能和较高选择性的关键因素。这些发现突出了Ir(I)/Ir(III)动态氧化还原转变在催化过程中的重要性,为开发用于氢活化和一氧化碳转化的高效催化剂提供了有价值的理论见解。