Zhang Feifei, Pohl Alexandre, Elrick Maya, Wei Guang-Yi, Cheng Keyi, Crockford Peter, Fakhraee Mojtaba, Lin Yi-Bo, Li Na, Wang Xiang-Dong, Shen Shu-Zhong
State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
Biogéosciences UMR 6282, Université Bourgogne Europe, CNRS, F-21000 Dijon, France.
Sci Adv. 2025 Jul 4;11(27):eadv2756. doi: 10.1126/sciadv.adv2756. Epub 2025 Jul 2.
The mid-Tournaisian carbon isotope excursion (TICE) represents the largest positive carbon isotope excursion in the late Paleozoic, coinciding with the onset of the late Paleozoic ice age (LPIA). Here, to investigate changes in the marine biological pump during the TICE, we measured barium isotopes (δBa) in two marine limestone sections in the Antler foreland basin (USA). We found the largest positive δBa shifts recorded in geological history, indicating increased marine export productivity in the Antler foreland basin, followed by the productivity-driven expansion of anoxia. The nearly identical stratigraphic trends, along with different absolute values in δBa between the two sites, suggest spatial differences in marine biological pump intensity during the Early Mississippian. Earth system model simulations indicate that a global increase of 30% in marine export productivity is needed to explain observed changes. Our findings support the idea that an enhanced marine biological pump contributed to elevated organic carbon burial and the transition from a greenhouse climate to the LPIA.
杜内阶中期碳同位素偏移(TICE)代表了晚古生代最大的正向碳同位素偏移,与晚古生代冰期(LPIA)的开始同时发生。在此,为了研究TICE期间海洋生物泵的变化,我们测量了美国鹿角前陆盆地两个海相石灰岩剖面中的钡同位素(δBa)。我们发现了地质历史记录中最大的正向δBa偏移,表明鹿角前陆盆地的海洋输出生产力增加,随后是由生产力驱动的缺氧现象扩大。两个地点之间几乎相同的地层趋势,以及δBa的不同绝对值,表明早密西西比世期间海洋生物泵强度存在空间差异。地球系统模型模拟表明,需要全球海洋输出生产力增加30%才能解释观测到的变化。我们的研究结果支持这样一种观点,即增强的海洋生物泵促成了有机碳埋藏的增加以及从温室气候向LPIA的转变。