Zhang Feifei, Romaniello Stephen J, Algeo Thomas J, Lau Kimberly V, Clapham Matthew E, Richoz Sylvain, Herrmann Achim D, Smith Harrison, Horacek Micha, Anbar Ariel D
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-6004, USA.
Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA.
Sci Adv. 2018 Apr 11;4(4):e1602921. doi: 10.1126/sciadv.1602921. eCollection 2018 Apr.
Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δU) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δU record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
解释二叠纪末大灭绝(显生宙最大的生物危机)之后海洋生物复苏延迟约500万年的原因,是地质科学和生物科学面临的一项根本性挑战。海洋氧化还原扰动可能在这种延迟复苏中起到了关键作用。然而,对早三叠世海洋缺氧细节(如时间、持续时间和范围)缺乏定量限制,使得海洋条件与生物复苏延迟之间的联系尚不明确。我们报告了来自伊朗扎尔剖面最上部二叠统至最下部中三叠统碳酸盐岩的高分辨率铀同位素(δU)数据,以确定早三叠世海洋氧化还原变化的时间和全球范围。我们的δU记录显示早三叠世期间出现多次负向偏移。同位素质量平衡模型表明,早三叠世缺氧海底的全球面积大幅扩大,在二叠纪末至格里斯巴赫阶中期、格里斯巴赫阶晚期至迪内阶中期、史密斯阶-斯帕斯阶过渡时期以及早/中三叠世过渡时期达到峰值。将铀、碳和锶同位素记录与早三叠世模拟海水磷酸盐浓度曲线进行比较表明,海洋生产力提高和海洋分层加剧可能是海洋缺氧范围扩大的直接原因。铀同位素记录所记录的氧化还原变化模式与早三叠世菊石灭绝峰值呈现出良好的一级对应关系。我们的结果表明,海洋缺氧的多次振荡调节了二叠纪末大灭绝之后海洋生态系统的复苏。