Siyahjani Farzad, Kalenyk Kostiantyn, Garcia-Molina Gary, Babaeizadeh Saeed
Sleep Number Labs, San Jose, CA, USA.
GlobalLogic, Kyiv, Ukraine.
Sci Rep. 2025 Jul 2;15(1):23607. doi: 10.1038/s41598-025-07336-4.
Sleep-disordered breathing (SDB), including obstructive sleep apnea (OSA) and central sleep apnea (CSA), significantly impairs sleep quality and overall well-being. This study evaluates a novel algorithm, developed and trained by the authors, using ballistocardiography (BCG) data collected from a non-intrusive smart bed platform. The algorithm aims to detect SDB events and estimate whether the apnea-hypopnea index (AHI) is ≥ 15, indicative of moderate to severe apnea. We analyzed data from 104 participants (48 males, 56 females; 21 with AHI ≥ 15 (13 males, 8 females), 83 with AHI < 15) by comparing algorithm-generated AHI estimates with standard polysomnography (PSG)-based AHI measurements. The algorithm achieved an accuracy of 83.3% in identifying individuals with moderate-to-severe apnea (AHI ≥ 15), demonstrating a sensitivity of 76% and specificity of 85%. Visual inspection of signals during apnea episodes, particularly those related to CSA, confirmed the algorithm's capability to capture meaningful physiological patterns. The unobtrusive design of the smart bed facilitates longitudinal sleep monitoring without requiring cumbersome equipment or specialized technical expertise. Future research will focus on validating the algorithm using multi-night, real-world data to enhance its generalizability. Smart beds show promise for early detection and personalized management of SDB, potentially improving clinical outcomes through improved tracking and targeted intervention.
睡眠呼吸障碍(SDB),包括阻塞性睡眠呼吸暂停(OSA)和中枢性睡眠呼吸暂停(CSA),会显著损害睡眠质量和整体健康状况。本研究评估了一种由作者开发和训练的新型算法,该算法使用从非侵入式智能床平台收集的心冲击图(BCG)数据。该算法旨在检测SDB事件,并估计呼吸暂停低通气指数(AHI)是否≥15,这表明存在中度至重度呼吸暂停。我们通过比较算法生成的AHI估计值与基于标准多导睡眠图(PSG)的AHI测量值,分析了104名参与者(48名男性,56名女性;21名AHI≥15(13名男性,8名女性),83名AHI<15)的数据。该算法在识别中度至重度呼吸暂停(AHI≥15)个体方面的准确率达到83.3%,灵敏度为76%,特异性为85%。对呼吸暂停发作期间的信号进行目视检查,特别是与CSA相关的信号,证实了该算法捕捉有意义生理模式的能力。智能床的非侵入式设计便于进行长期睡眠监测,无需繁琐的设备或专业技术知识。未来的研究将集中于使用多晚的真实世界数据验证该算法,以提高其通用性。智能床在SDB的早期检测和个性化管理方面显示出前景,有可能通过改进跟踪和针对性干预来改善临床结果。