Sadeghi Hossein
Department of Physics, Faculty of Sciences, Arak University, Arak, 38156-8-8349, Iran.
Sci Rep. 2025 Jul 2;15(1):23399. doi: 10.1038/s41598-025-08367-7.
This paper presents an advanced machine learning (ML) framework for precise nerve conduction velocity (NCV) analysis, integrating multiscale signal processing with physiologically-constrained deep learning. Our approach addresses three fundamental limitations of conventional NCV techniques: (1) oversimplified nerve fiber modeling, (2) temperature sensitivity, and (3) static measurement interpretation. The proposed framework combines: (i) entropy-optimized wavelet analysis for adaptive multiscale signal decomposition, (ii) thermodynamically-regularized neural networks incorporating Arrhenius kinetics, and (iii) stochastic progression models for uncertainty-aware longitudinal tracking. Through data extracted from prior studies in this field, rigorously validated across 1842 patients from 28 medical centers, we demonstrate significant improvements: 23.4% enhancement in motor NCV accuracy ([Formula: see text]) and 28.7% for sensory fibers. The framework maintains physiological interpretability while achieving superior performance through: (a) wavelet-optimized resolution scales (2-8 ms for motor, 0.5-2 ms for sensory fibers), (b) temperature compensation accurate to [Formula: see text] across 20-[Formula: see text], and (c) probabilistic progression tracking with 88.9% treatment response prediction accuracy. This work establishes new standards for ML applications in clinical neurophysiology by rigorously combining biophysical first principles with data-driven learning, offering both theoretical advances and immediate clinical utility for neuropathy diagnosis and monitoring.
本文提出了一种先进的机器学习(ML)框架,用于精确的神经传导速度(NCV)分析,将多尺度信号处理与生理约束深度学习相结合。我们的方法解决了传统NCV技术的三个基本局限性:(1)神经纤维建模过于简单;(2)温度敏感性;(3)静态测量解释。所提出的框架结合了:(i)用于自适应多尺度信号分解的熵优化小波分析;(ii)纳入阿伦尼乌斯动力学的热力学正则化神经网络;(iii)用于不确定性感知纵向跟踪的随机进展模型。通过从该领域先前研究中提取的数据,在来自28个医疗中心的1842名患者中进行了严格验证,我们证明了显著的改进:运动NCV准确性提高了23.4%([公式:见原文]),感觉纤维提高了28.7%。该框架在保持生理可解释性的同时,通过以下方式实现了卓越的性能:(a)小波优化的分辨率尺度(运动为2 - 8毫秒,感觉纤维为0.5 - 2毫秒);(b)在20 - [公式:见原文]范围内温度补偿精确到[公式:见原文];(c)概率进展跟踪,治疗反应预测准确率为88.9%。这项工作通过将生物物理第一原理与数据驱动学习严格结合,为临床神经生理学中的ML应用建立了新的标准,为神经病变的诊断和监测提供了理论进展和直接的临床应用价值。