Suppr超能文献

一种基于连续小波变换和注意力增强时空特征提取的轴承故障诊断混合深度学习方法。

A Hybrid Deep Learning Approach for Bearing Fault Diagnosis Using Continuous Wavelet Transform and Attention-Enhanced Spatiotemporal Feature Extraction.

作者信息

Siddique Muhammad Farooq, Saleem Faisal, Umar Muhammad, Kim Cheol Hong, Kim Jong-Myon

机构信息

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea.

出版信息

Sensors (Basel). 2025 Apr 25;25(9):2712. doi: 10.3390/s25092712.

Abstract

This study presents a hybrid deep learning approach for bearing fault diagnosis that integrates continuous wavelet transform (CWT) with an attention-enhanced spatiotemporal feature extraction framework. The model combines time-frequency domain analysis using CWT with a classification architecture comprising multi-head self-attention (MHSA), bidirectional long short-term memory (BiLSTM), and a 1D convolutional residual network (1D conv ResNet). This architecture effectively captures both spatial and temporal dependencies, enhances noise resilience, and extracts discriminative features from nonstationary and nonlinear vibration signals. The model is initially trained on a controlled laboratory bearing dataset and further validated on real and artificial subsets of the Paderborn bearing dataset, demonstrating strong generalization across diverse fault conditions. t-SNE visualizations confirm clear separability between fault categories, supporting the model's capability for precise and reliable feature learning and strong potential for real-time predictive maintenance in complex industrial environments.

摘要

本研究提出了一种用于轴承故障诊断的混合深度学习方法,该方法将连续小波变换(CWT)与注意力增强的时空特征提取框架相结合。该模型将使用CWT的时频域分析与包含多头自注意力(MHSA)、双向长短期记忆(BiLSTM)和一维卷积残差网络(1D conv ResNet)的分类架构相结合。这种架构有效地捕捉了空间和时间依赖性,增强了抗噪声能力,并从非平稳和非线性振动信号中提取了有区别的特征。该模型最初在一个受控的实验室轴承数据集上进行训练,并在帕德博恩轴承数据集的真实和人工子集上进一步验证,证明了其在各种故障条件下的强大泛化能力。t-SNE可视化证实了故障类别之间有明显的可分离性,支持该模型在复杂工业环境中进行精确可靠的特征学习以及实时预测性维护的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/196d/12074297/01c4098d7e1a/sensors-25-02712-g012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验