Balel Yunus, Sağtaş Kaan
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sivas Cumhuriyet University, Sivas, Turkey.
SEMRUK Technology Inc. Cumhuriyet Teknokent, Sivas, Turkey.
Sci Rep. 2025 Jul 3;15(1):23688. doi: 10.1038/s41598-025-93783-y.
This study developed a deep learning model for the automated detection and classification of impacted third molars using the Pell and Gregory Classification, Winter's Classification, and Pederson Difficulty Index. Panoramic radiographs of patients treated at Sivas Cumhuriyet University between 2014 and 2024 were retrospectively analyzed. Impacted teeth were manually classified, and annotations were created using the CVAT software with bounding-box labeling. The dataset included 2,300 images for training, 765 for validation, and 765 for testing, encompassing 7,624 impacted teeth for training, 2,580 for validation, and 2,493 for testing, with 98 unique labels. The YOLOv11 model was trained using optimized hyperparameters (learning rate: 0.01, batch size: 4, up to 1,000 epochs) and data augmentation. Performance metrics included precision (0.980), recall (0.948), F1 score (0.974), mAP@50 (0.990), and mAP@50:95 (0.974). Specific labels, such as 48-Distoangular-C-III (F1: 0.633), exhibited lower F1 scores. The model demonstrated high accuracy and efficiency, addressing the limitations of manual classifications. Enhancing dataset diversity and refining challenging labels could further improve outcomes. This model automates the complex classification of impacted third molars, offering a reliable, efficient decision support system for clinical applications, streamlining workflows, reducing variability, and improving diagnostic precision.
本研究开发了一种深度学习模型,用于使用佩尔和格雷戈里分类法、温特分类法和佩德森难度指数对阻生第三磨牙进行自动检测和分类。对2014年至2024年在锡瓦斯 Cumhuriyet 大学接受治疗的患者的全景X线片进行了回顾性分析。对阻生牙进行手动分类,并使用带有边界框标注的CVAT软件创建注释。该数据集包括用于训练的2300张图像、用于验证的765张图像和用于测试的765张图像,涵盖用于训练的7624颗阻生牙、用于验证的2580颗阻生牙和用于测试的2493颗阻生牙,共有98个独特标签。使用优化的超参数(学习率:0.01,批量大小:4,最多1000个轮次)和数据增强对YOLOv11模型进行训练。性能指标包括精确率(0.980)、召回率(0.948)、F1分数(0.974)、mAP@50(0.990)和mAP@50:95(0.974)。特定标签,如48-远中角位-C-III(F1:0.633),F1分数较低。该模型显示出高准确性和效率,解决了手动分类的局限性。增加数据集的多样性和优化具有挑战性的标签可以进一步改善结果。该模型实现了阻生第三磨牙复杂分类的自动化,为临床应用提供了一个可靠、高效的决策支持系统,简化了工作流程,减少了变异性,并提高了诊断精度。