文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种预测和分类牙阻生的混合方法:整合正则化回归和XG Boost方法。

A hybrid approach to predicting and classifying dental impaction: integrating regularized regression and XG boost methods.

作者信息

Mathew Asok, Yadalam Pradeep K, Radeideh Ahmed, Hadi Shorouq, Swed Rona, Cheema Reyyan, Mousa Al-Mohammad Majd, Alsaegh Mohammed, Shetty S R

机构信息

Department of Clinical Sciences, College of Dentistry, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.

Department of Periodontics, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.

出版信息

Front Oral Health. 2025 Apr 28;6:1524206. doi: 10.3389/froh.2025.1524206. eCollection 2025.


DOI:10.3389/froh.2025.1524206
PMID:40356852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12066611/
Abstract

INTRODUCTION: Dental impaction is a significant clinical challenge that requires advanced predictive modeling and healthcare analytics approaches. Impaction, a tooth alignment issue, is diagnosed using radiographic measurements like panoramic radiographs and CBCT. Artificial Intelligence (AI) is improving the accuracy of predicting dental impaction. Advanced predictive models like logistic Regression and XGBoost analyze critical variables, identify patterns, and perform predictive analysis. These models can identify potential impactions, assess impaction type, and develop treatment plans. Integrating AI into radiographic assessments is expected to enhance further the precision and risk-minimizing capabilities of surgical planning in dentistry. This study presents a hybrid approach combining regularized regression and ensemble methods to enhance the classification and prediction of dental impaction outcomes. By leveraging machine learning and statistical learning techniques, we aim to develop a robust clinical decision support system for dental practitioners. METHODS: This research aims to predict the eruption of 3rd molars in the mandible by analyzing three parameters: the distance from the lower 2nd molar to the anterior border, the mesiodistal width of the third molar, and the distance from the apex of the root to the inferior border of the mandible. The study is quantitative, observational, and cross-sectional retrospective. The distance from the lower 2nd molar to the anterior border determines the importance of space available for eruption. The distance from the root apex to the lower border addresses natural eruptive forces and resistance during the eruption. The study aims to find a correlation between eruption and distance from the root apex to the lower border of the mandible. Our feature selection process utilizes ensemble learning algorithms integrated with regularized regression techniques to analyze various parameters. This data analysis framework combines multiple predictive modeling approaches to achieve optimal results. RESULTS: The horizontal type of impaction has the lowest S/W ratio (0.9267), indicating the least available distal to 2nd molar space. This suggests a low potential for future eruptions. The regression equation calculates the S/W ratio using impacted molar width and distal space. A ratio greater than 1.1 indicates a good probability of lower 3rd molar eruption, while a below 0.8 indicates no eruption. The algorithm development process demonstrated the effectiveness of our hybrid approach in dental health analytics. The study improved impaction prediction accuracy to a rate of 78%, with horizontal class predictions achieving a precision of 0.72 and an error rate of 28.1%. Additionally, the regularized logistic regression model attained 75% accuracy for classification and prediction. CONCLUSION: The study aims to improve dental research by predicting the eruption behavior of lower molars, enabling dental practitioners to make more concise treatment plans. The study identifies the most significant parameters for establishing the space/width ratio: Distance from the second molar to the anterior ramus border and the third molar's mesiodistal width. Enhancing data quality, refining feature selection, and using advanced modeling techniques are crucial for improving predictive capabilities. The findings can help practitioners optimize treatments and reduce potential complications.

摘要

引言:牙齿阻生是一项重大的临床挑战,需要先进的预测模型和医疗分析方法。阻生是一种牙齿排列问题,通过全景X光片和CBCT等放射学测量来诊断。人工智能(AI)正在提高预测牙齿阻生的准确性。逻辑回归和XGBoost等先进的预测模型分析关键变量、识别模式并进行预测分析。这些模型可以识别潜在的阻生情况、评估阻生类型并制定治疗计划。将AI整合到放射学评估中有望进一步提高牙科手术规划的精度和风险最小化能力。本研究提出了一种结合正则化回归和集成方法的混合方法,以增强对牙齿阻生结果的分类和预测。通过利用机器学习和统计学习技术,我们旨在为牙科从业者开发一个强大的临床决策支持系统。 方法:本研究旨在通过分析三个参数来预测下颌第三磨牙的萌出:下颌第二磨牙到前缘的距离、第三磨牙的近远中宽度以及牙根尖到下颌下缘的距离。该研究是定量、观察性和横断面回顾性的。下颌第二磨牙到前缘的距离决定了可供萌出的空间的重要性。根尖到下颌下缘的距离涉及萌出过程中的自然萌出力和阻力。该研究旨在找出萌出与根尖到下颌下缘距离之间的相关性。我们的特征选择过程利用与正则化回归技术集成的集成学习算法来分析各种参数。这个数据分析框架结合了多种预测建模方法以实现最佳结果。 结果:水平型阻生的S/W比值最低(0.9267),表明第二磨牙远中可用空间最少。这表明未来萌出的可能性较低。回归方程使用阻生磨牙宽度和远中空间来计算S/W比值。比值大于1.1表明下颌第三磨牙萌出的可能性较大,而低于0.8则表明不会萌出。算法开发过程证明了我们的混合方法在牙齿健康分析中的有效性。该研究将阻生预测准确率提高到了78%,水平型分类预测的精度为0.72,错误率为28.1%。此外,正则化逻辑回归模型的分类和预测准确率达到了75%。 结论:该研究旨在通过预测下颌磨牙的萌出行为来改进牙科研究,使牙科从业者能够制定更精确的治疗计划。该研究确定了建立空间/宽度比值最重要的参数:第二磨牙到下颌支前缘的距离和第三磨牙的近远中宽度。提高数据质量、优化特征选择以及使用先进的建模技术对于提高预测能力至关重要。这些发现可以帮助从业者优化治疗并减少潜在并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/4aae118e1d65/froh-06-1524206-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/5c753aa7b4c9/froh-06-1524206-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/0e8eafdaebfe/froh-06-1524206-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/944aa245f3ef/froh-06-1524206-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/918723258017/froh-06-1524206-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/e9ec9ab69a3f/froh-06-1524206-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/2e9f8f2e03c2/froh-06-1524206-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/af10fdb2ea99/froh-06-1524206-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/4aae118e1d65/froh-06-1524206-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/5c753aa7b4c9/froh-06-1524206-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/0e8eafdaebfe/froh-06-1524206-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/944aa245f3ef/froh-06-1524206-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/918723258017/froh-06-1524206-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/e9ec9ab69a3f/froh-06-1524206-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/2e9f8f2e03c2/froh-06-1524206-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/af10fdb2ea99/froh-06-1524206-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6607/12066611/4aae118e1d65/froh-06-1524206-g008.jpg

相似文献

[1]
A hybrid approach to predicting and classifying dental impaction: integrating regularized regression and XG boost methods.

Front Oral Health. 2025-4-28

[2]
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.

Autism Adulthood. 2025-5-28

[3]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[4]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

[5]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[6]
Idiographic Lapse Prediction With State Space Modeling: Algorithm Development and Validation Study.

JMIR Form Res. 2025-6-3

[7]
Topical fluoride as a cause of dental fluorosis in children.

Cochrane Database Syst Rev. 2024-6-20

[8]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[9]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2025-1-29

[10]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

本文引用的文献

[1]
Combining public datasets for automated tooth assessment in panoramic radiographs.

BMC Oral Health. 2024-3-26

[2]
Mandibular Third Molar Impaction among Patients Visiting Outpatient Dental Department of a Tertiary Care Centre.

JNMA J Nepal Med Assoc. 2023-10-1

[3]
Machine Learning Prediction of Quality of Life Improvement During Antidepressant Treatment of Patients With Major Depressive Disorder: A STAR*D and CAN-BIND-1 Report.

J Clin Psychiatry. 2023-11-15

[4]
Patient's perception of recovery following surgical removal of mandibular third molars. A prospective european multi-center study.

J Craniomaxillofac Surg. 2023-10

[5]
AMMVF-DTI: A Novel Model Predicting Drug-Target Interactions Based on Attention Mechanism and Multi-View Fusion.

Int J Mol Sci. 2023-9-15

[6]
Managing Mandibular Second Molar Impaction: A Systematic Review and Meta-Analysis.

J Oral Maxillofac Surg. 2023-11

[7]
The efficacy of supervised learning and semi-supervised learning in diagnosis of impacted third molar on panoramic radiographs through artificial intelligence model.

Dentomaxillofac Radiol. 2023-9

[8]
Inference of gene regulatory networks based on the Light Gradient Boosting Machine.

Comput Biol Chem. 2022-12

[9]
Deep Learning Based Detection Tool for Impacted Mandibular Third Molar Teeth.

Diagnostics (Basel). 2022-4-9

[10]
Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting.

Comput Biol Med. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索