Lai Changxin, Yin Minglang, Kholmovski Eugene G, Popescu Dan M, Lu Dai-Yin, Scherer Erica, Binka Edem, Zimmerman Stefan L, Chrispin Jonathan, Hays Allison G, Phelan Dermot M, Abraham M Roselle, Trayanova Natalia A
Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
Nat Cardiovasc Res. 2025 Jul 2. doi: 10.1038/s44161-025-00679-1.
Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.
室性心律失常导致的心脏性猝死是全球主要的死亡原因。在肥厚型心肌病(HCM)患者中,心律失常性死亡的预后评估具有挑战性,在这种情况下,当前的临床指南表现不佳且准确性不一致。在此,我们提出一种深度学习方法MAARS(用于室性心律失常风险分层的多模态人工智能),通过分析多模态医学数据来预测HCM患者的致命性心律失常事件。MAARS基于Transformer的神经网络从电子健康记录、超声心动图和放射学报告以及对比增强心脏磁共振图像中学习,后者是该模型的独特特征。MAARS在内部和外部队列中的曲线下面积分别为0.89(95%置信区间(CI)0.79 - 0.94)和0.81(95%CI 0.69 - 0.93),比当前临床指南分别高出0.27 - 0.35(内部)和0.22 - 0.30(外部)。与临床指南不同,它在不同人口统计学亚组中表现出公平性。我们从多个层面解读MAARS的预测结果,以提高人工智能的透明度,并得出值得进一步研究的风险因素。