Suppr超能文献

用于预测肥厚型心肌病心律失常性死亡的多模态人工智能

Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.

作者信息

Lai Changxin, Yin Minglang, Kholmovski Eugene G, Popescu Dan M, Lu Dai-Yin, Scherer Erica, Binka Edem, Zimmerman Stefan L, Chrispin Jonathan, Hays Allison G, Phelan Dermot M, Abraham M Roselle, Trayanova Natalia A

机构信息

Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Nat Cardiovasc Res. 2025 Jul 2. doi: 10.1038/s44161-025-00679-1.

Abstract

Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.

摘要

室性心律失常导致的心脏性猝死是全球主要的死亡原因。在肥厚型心肌病(HCM)患者中,心律失常性死亡的预后评估具有挑战性,在这种情况下,当前的临床指南表现不佳且准确性不一致。在此,我们提出一种深度学习方法MAARS(用于室性心律失常风险分层的多模态人工智能),通过分析多模态医学数据来预测HCM患者的致命性心律失常事件。MAARS基于Transformer的神经网络从电子健康记录、超声心动图和放射学报告以及对比增强心脏磁共振图像中学习,后者是该模型的独特特征。MAARS在内部和外部队列中的曲线下面积分别为0.89(95%置信区间(CI)0.79 - 0.94)和0.81(95%CI 0.69 - 0.93),比当前临床指南分别高出0.27 - 0.35(内部)和0.22 - 0.30(外部)。与临床指南不同,它在不同人口统计学亚组中表现出公平性。我们从多个层面解读MAARS的预测结果,以提高人工智能的透明度,并得出值得进一步研究的风险因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验