Suppr超能文献

铌酸锂中的3D超宽带光学色散微区

3D ultra-broadband optically dispersive microregions in lithium niobate.

作者信息

Zhang Bo, Wang Zhuo, Albrow-Owen Tom, Hasan Tawfique, Chen Zesheng, Song Zhiying, Zhang Gongyuan, Joyce Hannah, Tan Dezhi, Guo Qiangbing, Qiu Cheng-Wei, Yang Zongyin, Qiu Jianrong

机构信息

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.

出版信息

Nat Commun. 2025 Jul 2;16(1):6086. doi: 10.1038/s41467-025-61317-9.

Abstract

3D in-substrate integration of optical functionalities fully utilizes the vertical dimension of space and is valuable for advancing next-generation integrated optoelectronics. However, as a key optical effect, optical dispersion remains unavailable to be tailored at the microscale in 3D. We introduce artificial dispersive microregions in lithium niobate crystals to engineer free-space ultra-broadband optical dispersion. The microregions are formed by ultrafast laser-induced sub-wavelength phase-transition nanostripes, which modulate the crystal's birefringence to establish localized frequency-dependent interference of ordinary and extraordinary light. This approach operates across an ultra-broad wavelength range (>1300 nm) within an exceptionally compact volume (50 × 10 × 6 µm³), and allows for precise, on-demand dispersion control in 3D space. The dispersive microregions exhibit viewing-angle independence, stability to harsh conditions (600 °C high temperature, contamination, corrosion, and mechanical damage), and wide applicability across various birefringent crystals. We demonstrate the versatility of our method in developing broadband on-chip micro-spectrometers and applications of spectral imaging, information recording, and encryption.

摘要

光学功能的三维衬底内集成充分利用了空间的垂直维度,对推动下一代集成光电子学具有重要价值。然而,作为一种关键的光学效应,光学色散在三维微尺度下仍无法进行定制。我们在铌酸锂晶体中引入人工色散微区,以设计自由空间超宽带光学色散。这些微区由超快激光诱导的亚波长相变纳米条纹形成,它们调制晶体的双折射,以建立寻常光和非寻常光的局部频率相关干涉。这种方法在异常紧凑的体积(50×10×6 µm³)内的超宽波长范围(>1300 nm)内有效,并且能够在三维空间中进行精确的、按需的色散控制。色散微区具有视角独立性、对恶劣条件(600°C高温、污染、腐蚀和机械损伤)的稳定性,以及在各种双折射晶体中的广泛适用性。我们展示了我们的方法在开发宽带片上微型光谱仪以及光谱成像、信息记录和加密应用方面的多功能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5aa/12223147/c127cc896a34/41467_2025_61317_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验