Cruz-Delgado Daniel, Antonio-Lopez J Enrique, Perez-Leija Armando, Fontaine Nicolas K, Eikenberry Stephen S, Christodoulides Demetrios N, Bandres Miguel A, Amezcua-Correa Rodrigo
CREOL, The College of Optics and Photonics, the University of Central Florida, Orlando, FL, USA.
Nokia Bell Labs, Holmdel, NJ, USA.
Nat Commun. 2025 Jul 2;16(1):6081. doi: 10.1038/s41467-025-60615-6.
Multimode optical fibers represent the ideal platform for transferring multidimensional light states. However, dispersion degrades the correlations between the light's degrees of freedom, thus limiting the effective transport of ultrashort pulses between distant nodes of optical networks. Here, we demonstrate that tailoring the spatiotemporal structure of ultrashort light pulses can overcome the physical limitations imposed by both chromatic and modal dispersion in multimode optical fibers. We synthesize these light states with predefined spatial and chromatic dynamics through applying a sequence of transformations to shape the optical field in all its dimensions. Similar methods can also be used to overcome dispersion processes in other physical settings like acoustics and electron optics. Our results will enable advancements in laser-based technologies, including multimode optical communications, imaging, ultrafast light-matter interactions, and high brightness fiber sources.
多模光纤是传输多维光态的理想平台。然而,色散会降低光自由度之间的相关性,从而限制超短脉冲在光网络远距离节点之间的有效传输。在此,我们证明了调整超短光脉冲的时空结构可以克服多模光纤中色散和模态色散所带来的物理限制。我们通过应用一系列变换来塑造光场的所有维度,从而合成具有预定义空间和色散动力学的这些光态。类似的方法也可用于克服声学和电子光学等其他物理环境中的色散过程。我们的研究结果将推动基于激光的技术发展,包括多模光通信、成像、超快光与物质相互作用以及高亮度光纤光源。