Kumar Raj, Kumar Mukesh, Gangwar Lokesh Kumar, Kumar Vivek, Singh Sudhanshu, Edhigalla Premnath, Rahimi Mehdi
Department of Genetic and Plant Breeding, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India.
Centre for Aromatic Plants, Selaqui, Dehradun, Uttarakhand, 248011, India.
Sci Rep. 2025 Jul 2;15(1):23405. doi: 10.1038/s41598-025-07721-z.
Selection of desirable genotypes across the traits is the most challenging task for plant breeders. This experiment aims to study the association and reliability of the Smith-Hazel Selection Index (SH), Factor Analytic Best Linear Unbiased Prediction (FAI-BLUP), Multi-Trait Selection Index (MTSI) and Multi-Trait Genotype-Ideotype Distance Index (MGIDI) selection index with Weighted Rank Aggregation (WRA) and Genotype by Yield×Trait (GYT) Biplot analysis for the selection of superior genotypes. The evaluation of 55 genotypes, including parents and hybrids, was done at CRC of SVPUAT Meerut, UP, India, during 2023-2024 following Randomized Complete Block Design within three replications. The FAI BLUP and MGIDI both revealed the highest percentage increase in selection differential for SY, followed by SL, HI, SMR and TW. The highest rank correlation was observed between SHI and MTSI, followed by MGIDI and FAI BLUP. The Venn diagram revealed the best genotypes in all four indexes are C3, C4, C7, C32 and C36. The WRA analysis also suggested similar best genotypes such as C4 followed by C3, C27, C7 and C32 by assigning different weights to four indexes. PCA of the GT biplot revealed the PC1 and PC2 accounting for a total cumulative variance of 72.29%, whereas in GYT biplot PC1 and PC2 accounted for a cumulative variance of 96.96%, which is greater than GT biplot. Amongst all the selection indexes FAI-BLUP, MTSI and MGIDI are found more reliable whereas genotypes namely C3, C4, C7 and C32 can further be used in crop improvement programs.
在众多性状中选择理想的基因型是植物育种家面临的最具挑战性的任务。本实验旨在研究史密斯 - 黑兹尔选择指数(SH)、因子分析最佳线性无偏预测(FAI - BLUP)、多性状选择指数(MTSI)和多性状基因型 - 理想型距离指数(MGIDI)选择指数与加权秩聚合(WRA)以及产量×性状基因型(GYT)双标图分析在选择优良基因型方面的关联性和可靠性。2023 - 2024年期间,在印度北方邦密鲁特市SVPUAT的作物研究中心,按照随机完全区组设计,对包括亲本和杂种在内的55个基因型进行了三次重复评估。FAI BLUP和MGIDI均显示,单株产量(SY)的选择差增加百分比最高,其次是单株粒重(SL)、收获指数(HI)、单株穗数(SMR)和粒宽(TW)。SHI和MTSI之间的秩相关性最高,其次是MGIDI和FAI BLUP。维恩图显示,所有四个指数中表现最佳的基因型是C3、C4、C7、C32和C36。WRA分析也表明了类似的最佳基因型,如C4,其次是C3、C27、C7和C32,通过对四个指数赋予不同权重得出。GT双标图的主成分分析显示,PC1和PC2的累计方差占比为72.29%,而在GYT双标图中,PC1和PC2的累计方差占比为96.96%,大于GT双标图。在所有选择指数中,FAI - BLUP、MTSI和MGIDI被发现更可靠,而基因型C3、C4、C7和C32可进一步用于作物改良计划。