Zeng Yongqing, Li Haibo, Xia Xiang, Hu Weidong, Liu Xiaohong, Huang Jiawen, Zhu Xinnian
College of Civil Engineering and Architecture, Hunan Institute of Science and Technology, Yueyang, 414000, China.
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China.
Sci Rep. 2025 Jul 2;15(1):23122. doi: 10.1038/s41598-025-08696-7.
Compared to the high-risk hazards of explosive blasting, liquid carbon dioxide phase transition fracturing technology, as a new technology, can be used as a supplementary method that is not suitable for explosive blasting sites. Liquid carbon dioxide phase transition fracturing blasting is different from explosive blasting; for the application of liquid carbon dioxide phase transition fracturing blasting in the process of rock excavation, there is still a lack of research on the vibration effect of terrain on the topographic propagation law of vibration wave, so it is of certain significance to study the vibration wave propagation rule of liquid carbon dioxide phase transition fracturing blasting under different terrain conditions. The study on the terrain propagation law of vibration waves in liquid carbon dioxide phase change fracturing blasting was carried out. Firstly, the field CO blasting tests and PPV measurements are described, and the applicability of UDEC software to blasting analysis and the determination of the load for liquid carbon dioxide phase change fracturing blasting were introduced. Then, the selection of physical and mechanical parameters, viscous boundary conditions, and damping for the site rock mass was elaborated in detail. Finally, the numerical models are established for liquid carbon dioxide phase transition fracturing blasting in flat, concave, convex, and slope terrain. The influence laws of flat, concave, convex, and slope terrain on the peak particle velocity of liquid carbon dioxide phase transition fracturing blasting are obtained. In actual CO blasting sites, the safe PPV vibration control standards can be proposed based on different terrain by applying the proposed terrain prediction formula, solving the challenge of quantitatively analyzing the terrain effects of CO blasting. The research results have certain guiding significance for predicting the peak particle velocity in advance and controlling the vibration effect of high-pressure carbon dioxide fracturing blasting.
与爆炸爆破的高风险危害相比,液态二氧化碳相变压裂技术作为一项新技术,可作为不适用于爆炸爆破场所的补充方法。液态二氧化碳相变压裂爆破不同于爆炸爆破;对于液态二氧化碳相变压裂爆破在岩石开挖过程中的应用,目前仍缺乏关于地形对振动波地形传播规律的振动效应研究,因此研究不同地形条件下液态二氧化碳相变压裂爆破的振动波传播规律具有一定意义。开展了液态二氧化碳相变压裂爆破中振动波的地形传播规律研究。首先,描述了现场二氧化碳爆破试验和峰值质点振动速度(PPV)测量,并介绍了UDEC软件在爆破分析中的适用性以及液态二氧化碳相变压裂爆破荷载的确定方法。然后,详细阐述了现场岩体物理力学参数的选取、粘性边界条件和阻尼。最后,建立了平坦、凹陷、凸起和斜坡地形下液态二氧化碳相变压裂爆破的数值模型。得出了平坦、凹陷、凸起和斜坡地形对液态二氧化碳相变压裂爆破峰值质点速度的影响规律。在实际二氧化碳爆破现场,通过应用所提出的地形预测公式,可根据不同地形提出安全的PPV振动控制标准,解决了定量分析二氧化碳爆破地形效应的难题。研究成果对提前预测峰值质点速度和控制高压二氧化碳压裂爆破的振动效应具有一定的指导意义。