Tian Jun-Jie, Li Ruirui, Quinn Ethan C, Nam Jiyun, Chokkapu Eswara Rao, Zhang Zhen, Zhou Li, Gowda Ravikumar R, Chen Eugene Y-X
Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09220-7.
Natural chiral polymers, such as DNA, proteins, cellulose and poly[(R)-3-hydroxybutyrate] ((R)-P3HB), are prevalent in their enantiopure forms. Existing methods to synthesize enantiopure polymers focus on enantiospecific polymerization, in which only one specific enantiomer is obtained from the corresponding chiral monomer. Here we introduce a catalytic stereodivergent synthetic strategy to access all enantiopure di-isotactic poly(3-hydroxyalkanoate) (PHA) diastereomers from bacterial (R)-P3HB as the single chiral source. A series of enantiopure (R,R)-α-alkylated-β-butyrolactones are obtained from (R)-P3HB and then subjected to the catalyst-controlled diastereodivergent ring-opening polymerization (ROP) to enantiopure di-isotactic α-alkylated PHAs. Metal-catalysed coordination-insertion ROP results in threo-(R,R)-di-isotactic PHAs with chiral retention, whereas anionic ROP catalysed by an organic superbase produces erythro-(R,S)-di-isotactic PHAs with chiral inversion, achieving precision di-isotactic PHAs with exclusive regio- and stereoregularity. This strategy has also enabled the stereodivergent synthesis of all four [(R,R), (S,S), (R,S) and (S,R)] stereoisomers of α,α-dialkylated PHAs from (R)-P3HB, which can be depolymerized to chiral α,α-dialkylated-β-butyrolactones with high stereoselectivity. Overall, this catalyst-controlled regio- and stereoselective, stereodivergent synthetic methodology provides access to 16 enantiopure stereoisomers of α(α)-(di)substituted PHAs and enables the stereochemistry-defined structure-property relationship study of the di-isotactic PHAs, providing insights into the effects of main-chain stereoconfigurations and alkyl side chains on their thermal properties, melt processability, mechanical performance and supramolecular stereocomplexation.
天然手性聚合物,如DNA、蛋白质、纤维素和聚[(R)-3-羟基丁酸酯]((R)-P3HB),通常以对映体纯的形式存在。现有的合成对映体纯聚合物的方法主要集中在对映体特异性聚合上,即从相应的手性单体中仅获得一种特定的对映体。在此,我们引入了一种催化立体发散合成策略,以细菌(R)-P3HB作为单一手性源,制备所有对映体纯的双全同立构聚(3-羟基链烷酸酯)(PHA)非对映体。从(R)-P3HB获得了一系列对映体纯的(R,R)-α-烷基化-β-丁内酯,然后将其进行催化剂控制的非对映体发散开环聚合(ROP),以制备对映体纯的双全同立构α-烷基化PHA。金属催化的配位插入ROP产生具有手性保持的苏式-(R,R)-双全同立构PHA,而由有机超强碱催化的阴离子ROP产生具有手性翻转的赤式-(R,S)-双全同立构PHA,从而实现具有独特区域和立体规整性的精密双全同立构PHA。该策略还实现了从(R)-P3HB立体发散合成α,α-二烷基化PHA的所有四种[(R,R)、(S,S)、(R,S)和(S,R)]立体异构体,这些异构体可以以高立体选择性解聚为手性α,α-二烷基化-β-丁内酯。总体而言,这种催化剂控制的区域和立体选择性、立体发散合成方法能够制备16种对映体纯的α(α)-(二)取代PHA立体异构体,并能够对双全同立构PHA进行立体化学定义的结构-性能关系研究,从而深入了解主链立体构型和烷基侧链对其热性能、熔体加工性能、机械性能和超分子立体络合的影响。