文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

旨在与严重急性呼吸综合征冠状病毒2(SARS-CoV-2)诱饵或竞争的细胞外囊泡的定量表征揭示了针对不同关注变体的不同作用模式,并突出了奥密克戎的多样性。

Quantitative characterisation of extracellular vesicles designed to decoy or compete with SARS-CoV-2 reveals differential mode of action across variants of concern and highlights the diversity of Omicron.

作者信息

Schürz Melanie, Pagani Isabel, Klinglmayr Eva, Melo Benirschke Heloisa, Mayora Neto Martin, Galietta Luis J V, Venturini Arianna, Pedemonte Nicoletta, Capurro Valeria, Laner-Plamberger Sandra, Grabmer Christoph, Emminger Essi, Wolf Martin, Steiner Marianne, Kohlmetz Cyrus, Mayr Niklas, Paniushkina Liliia, Schallmoser Katharina, Strunk Dirk, Brandstetter Hans, Hintersteiner Martin, Temperton Nigel, Vicenzi Elisa, Meisner-Kober Nicole

机构信息

Chemical Biology and Biological Therapeutics, Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria.

Ludwig Boltzmann Institute for Nanovesicular Precision Medicine at the Paris Lodron University Salzburg, Salzburg, Austria.

出版信息

Cell Commun Signal. 2025 Jul 2;23(1):323. doi: 10.1186/s12964-025-02223-x.


DOI:10.1186/s12964-025-02223-x
PMID:40604989
Abstract

BACKGROUND: The converging biology between enveloped viruses and extracellular vesicles (EVs) has raised interest in the application of engineered EVs as antiviral therapeutics. Following the recent COVID-19 pandemic, EVs engineered with either the ACE2-receptor or Spike-protein have been proposed as strategy to either decoy SARS-CoV-2, or to compete with its cell entry. For generic use as a platform for future pandemic preparedness, a systematic and quantitative comparison of both strategies is required to assess their limitations and benefits across different variants of concern. METHODS: Here we generated EVs decorated with either the ACE2-receptor or the Spike-protein of (Wuhan)-SARS-CoV-2 and used single vesicle imaging for in-depth quantitative characterisation. These vesicles were then systematically tested for anti-viral activity across SARS-CoV-2 variants of concern using both, pseudotype and live virus cellular infection models including primary human bronchial and nasal explants. RESULTS: Spike-protein EVs or ACE2-EVs recovered from transiently transfected HEK293T cells comprised only a small fraction of the EV secretome (5% or 20%, respectively) and were primarily derived from the plasma membrane rather than multivesicular bodies. Redirecting intracellular trafficking of the Spike protein by mutating its transmembrane or subcellular localisation domains did not increase the yields of Spike-EVs. Both types of vesicles inhibited SARS-CoV-2 (D614G) in a dose dependent manner with kinetics and immunohistochemistry consistent with an inhibition at the initial cell entry stage. ACE2-EVs were more potent than Spike-EVs and at least 500-1000 times more potent than soluble antibodies in a pseudotype model. Surprisingly, ACE2-EVs switched from an inhibitory to an enhancer activity for the Omicron BA.1 variant whereas Spike-EVs retained their activity across all variants of concern. CONCLUSIONS: While our data show that both types of engineered EVs potently inhibit SARS-CoV, the decoy versus competition strategy may result in diverging outcomes when considering viral evolution into new variants of concern. While Spike-EVs retain their competition for receptor binding even against higher affinity viral Spike mutations, the formation of complexes between ACE2-EVs and the virus may not only result in inhibition by decoy. As EVs are actively internalised by cells themselves, they may shuttle the virus into cells, resulting in a productive alternative cell entry route for variants such as Omicron, that diverge from strict plasma membrane protease cleavage to the use of endosomal proteases for release of their genome.

摘要

背景:包膜病毒与细胞外囊泡(EVs)之间趋同的生物学特性引发了人们对工程化细胞外囊泡作为抗病毒疗法应用的兴趣。在最近的新冠疫情之后,用血管紧张素转换酶2(ACE2)受体或刺突蛋白工程化的细胞外囊泡已被提议作为诱饵策略以对抗严重急性呼吸综合征冠状病毒2(SARS-CoV-2),或与其细胞进入过程竞争。为了作为未来大流行防范的通用平台,需要对这两种策略进行系统的定量比较,以评估它们在不同关注变体中的局限性和益处。 方法:在这里,我们生成了用(武汉)-SARS-CoV-2的ACE2受体或刺突蛋白装饰的细胞外囊泡,并使用单囊泡成像进行深入的定量表征。然后,使用假型和活病毒细胞感染模型(包括原代人支气管和鼻外植体),对这些囊泡针对SARS-CoV-2关注变体的抗病毒活性进行系统测试。 结果:从瞬时转染的人胚肾293T细胞(HEK293T)中回收的刺突蛋白细胞外囊泡或ACE2细胞外囊泡仅占细胞外囊泡分泌组的一小部分(分别为5%或20%),并且主要来源于质膜而非多囊泡体。通过突变其跨膜或亚细胞定位结构域来重定向刺突蛋白的细胞内运输,并没有提高刺突细胞外囊泡的产量。两种类型的囊泡均以剂量依赖性方式抑制SARS-CoV-2(D614G),其动力学和免疫组织化学结果与在初始细胞进入阶段的抑制作用一致。在假型模型中,ACE2细胞外囊泡比刺突蛋白细胞外囊泡更有效,并且比可溶性抗体至少强500 - 1000倍。令人惊讶的是,对于奥密克戎BA.1变体,ACE2细胞外囊泡从抑制活性转变为增强活性,而刺突蛋白细胞外囊泡在所有关注变体中均保持其活性。 结论:虽然我们的数据表明这两种类型的工程化细胞外囊泡均能有效抑制SARS-CoV,但在考虑病毒演变为新的关注变体时,诱饵策略与竞争策略可能会导致不同的结果。虽然刺突蛋白细胞外囊泡即使面对更高亲和力的病毒刺突突变仍能保持其对受体结合的竞争,但ACE2细胞外囊泡与病毒之间形成的复合物不仅可能通过诱饵作用导致抑制。由于细胞外囊泡会被细胞自身主动内化,它们可能会将病毒转运到细胞中,从而为奥密克戎等变体形成一种有效的替代细胞进入途径,这些变体从严格的质膜蛋白酶切割方式转变为使用内体蛋白酶来释放其基因组。

相似文献

[1]
Quantitative characterisation of extracellular vesicles designed to decoy or compete with SARS-CoV-2 reveals differential mode of action across variants of concern and highlights the diversity of Omicron.

Cell Commun Signal. 2025-7-2

[2]
Determinants of susceptibility to SARS-CoV-2 infection in murine ACE2.

J Virol. 2025-6-17

[3]
CD81 fusion alters SARS-CoV-2 Spike trafficking.

mBio. 2024-9-11

[4]
The ACE2 decoy receptor can overcome immune escape by rapid mutating SARS-CoV-2 variants and reduce cytokine induction and clot formation.

J Biomed Sci. 2025-6-26

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[7]
The ACE2 Receptor from Common Vampire Bat () and Pallid Bat () Support Attachment and Limited Infection of SARS-CoV-2 Viruses in Cell Culture.

Viruses. 2025-3-31

[8]
Adaptive variations in SARS-CoV-2 spike proteins: effects on distinct virus-cell entry stages.

mBio. 2023-8-31

[9]
TMEM106B Supports Viral Entry and Syncytia Formation Mediated by the Spike Proteins From Omicron BA.2.86 and JN.1.

J Med Virol. 2025-7

[10]
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.

Cochrane Database Syst Rev. 2021-9-2

本文引用的文献

[1]
Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue.

Nat Commun. 2024-1-30

[2]
SARS-CoV-2 biology and host interactions.

Nat Rev Microbiol. 2024-4

[3]
Identification of scaffold proteins for improved endogenous engineering of extracellular vesicles.

Nat Commun. 2023-8-7

[4]
Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles.

J Extracell Vesicles. 2023-8

[5]
Advances in developing ACE2 derivatives against SARS-CoV-2.

Lancet Microbe. 2023-5

[6]
Origin and evolution of SARS-CoV-2.

Eur Phys J Plus. 2023

[7]
Quantitative proteomics and biological activity of extracellular vesicles engineered to express SARS-CoV-2 spike protein.

J Extracell Biol. 2022-10

[8]
Label-free imaging and biomarker analysis of exosomes with plasmonic scattering microscopy.

Chem Sci. 2022-10-12

[9]
SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins.

PLoS One. 2022

[10]
EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin.

J Extracell Vesicles. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索