文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

血管紧张素转换酶2(ACE2)诱饵受体可以通过快速突变的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体克服免疫逃逸,并减少细胞因子诱导和血栓形成。

The ACE2 decoy receptor can overcome immune escape by rapid mutating SARS-CoV-2 variants and reduce cytokine induction and clot formation.

作者信息

Lin Ming-Shiu, Chao Tai-Ling, Chou Yu-Chi, Yi Yao, Chen Ci-Ling, Huang Kuo-Yen, Chang Sui-Yuan, Yang Pan-Chyr

机构信息

Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

出版信息

J Biomed Sci. 2025 Jun 26;32(1):59. doi: 10.1186/s12929-025-01156-4.


DOI:10.1186/s12929-025-01156-4
PMID:40571942
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12199494/
Abstract

BACKGROUND: The COVID-19 pandemic continues to affect the world in 2025. The rapid mutation of SARS-CoV-2 results in breakthrough infections and diminishes the efficacy of vaccines and anti-viral drugs. The severity of the disease varies across different variants, and the underlying mechanisms driving these differences remain unclear. This study explores the relationship between different Spike variants and cytotoxicity, aiming to determine whether the humanized decoy receptor ACE2-Fc can neutralize spikes from diverse variants, offering a solution to overcome rapid mutating SARS-CoV-2 induced immune escape. METHODS: We co-cultured 293 T-ACE2 cells with 293 T cells transfected with various Spike protein variants or used H1650-ACE2 cells transfected with these Spike variants. This allowed us to observe the effects of different Spike mutations, specifically focusing on cell fusion, cytotoxicity, and cytokine release from human peripheral blood mononuclear cells. Flow cytometry is employed to determine if ACE2-Fc can recognize different Spike variants. We also assess the ability of ACE2-Fc to inhibit infection, cell fusion, cytotoxicity, and cytokine release through pseudovirus infections or Spike protein transfections. Additionally, we use actual viruses from SARS-CoV-2 patients to validate the impacts of Spike mutations and the effectiveness of ACE2-Fc. Furthermore, human plasma is utilized to evaluate ACE2-Fc's capability to inhibit Spike-induced clot formation. RESULTS: We found that different Spike variants, particularly those with enhancements at the S2' site, increased cell-cell fusion capability, which correlated positively with cytotoxicity and cytokine IL-6 and TNF-α released from PBMCs. ACE2-Fc recognized spikes from wide-range of variants, including wild type, Alpha, Delta, Delta plus, Lambda, BA.2, BA.2.75, BA.5, BF.7, BQ.1, XBB.1, JN.1, KP.2, and KP.3, and effectively prevented these spike-expressing pseudo-viruses from entering host cells. Crucially, ACE2-Fc can prevent spike-induced cell fusion, thereby reducing subsequent cytotoxicity and the release of IL-6 and TNF-α from PBMCs. ACE2-Fc also effectively reduces plasma clot formation induced by trimeric spike proteins. CONCLUSIONS: These findings demonstrated that ACE2-Fc could effectively combat the infection of rapidly mutating SARS-CoV-2, providing a potential solution to overcome immune evasion.

摘要

背景:2025年,新冠疫情仍在影响着全球。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的快速变异导致突破性感染,并降低了疫苗和抗病毒药物的疗效。不同变异株导致的疾病严重程度各不相同,但其背后的驱动机制仍不清楚。本研究探讨了不同刺突蛋白变异体与细胞毒性之间的关系,旨在确定人源化诱饵受体ACE2-Fc是否能够中和多种变异体的刺突蛋白,为克服SARS-CoV-2快速变异导致的免疫逃逸提供解决方案。 方法:我们将293T-ACE2细胞与转染了各种刺突蛋白变异体的293T细胞共培养,或使用转染了这些刺突蛋白变异体的H1650-ACE2细胞。这使我们能够观察不同刺突突变的影响,特别关注细胞融合、细胞毒性以及人外周血单个核细胞释放细胞因子的情况。采用流式细胞术来确定ACE2-Fc是否能够识别不同的刺突蛋白变异体。我们还通过假病毒感染或刺突蛋白转染来评估ACE2-Fc抑制感染、细胞融合、细胞毒性和细胞因子释放的能力。此外,我们使用来自SARS-CoV-2患者的实际病毒来验证刺突突变的影响以及ACE2-Fc的有效性。此外,利用人血浆来评估ACE2-Fc抑制刺突蛋白诱导的血凝块形成的能力。 结果:我们发现,不同的刺突蛋白变异体,特别是那些在S2'位点有增强的变异体,增加了细胞间融合能力,这与细胞毒性以及外周血单个核细胞释放的细胞因子白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)呈正相关。ACE2-Fc能够识别多种变异体的刺突蛋白,包括野生型、阿尔法、德尔塔、德尔塔plus、拉姆达、BA.2、BA.2.75、BA.5、BF.7、BQ.1、XBB.1、JN.1、KP.2和KP.3,并有效阻止这些表达刺突蛋白的假病毒进入宿主细胞。至关重要的是,ACE2-Fc能够防止刺突蛋白诱导的细胞融合,从而降低随后的细胞毒性以及外周血单个核细胞释放IL-6和TNF-α。ACE2-Fc还能有效减少三聚体刺突蛋白诱导的血浆血凝块形成。 结论:这些发现表明,ACE2-Fc能够有效对抗快速变异的SARS-CoV-2感染,为克服免疫逃逸提供了一种潜在的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/5b08b483170b/12929_2025_1156_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/d9c0d0ea3209/12929_2025_1156_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/c6fff19d1a1f/12929_2025_1156_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/b5275b4dbbbc/12929_2025_1156_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/d1c42024518a/12929_2025_1156_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/5011e561ea51/12929_2025_1156_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/5b08b483170b/12929_2025_1156_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/d9c0d0ea3209/12929_2025_1156_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/c6fff19d1a1f/12929_2025_1156_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/b5275b4dbbbc/12929_2025_1156_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/d1c42024518a/12929_2025_1156_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/5011e561ea51/12929_2025_1156_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61d/12199494/5b08b483170b/12929_2025_1156_Fig6_HTML.jpg

相似文献

[1]
The ACE2 decoy receptor can overcome immune escape by rapid mutating SARS-CoV-2 variants and reduce cytokine induction and clot formation.

J Biomed Sci. 2025-6-26

[2]
Determinants of susceptibility to SARS-CoV-2 infection in murine ACE2.

J Virol. 2025-6-17

[3]
Integrative Computational Modeling of Distinct Binding Mechanisms for Broadly Neutralizing Antibodies Targeting SARS-CoV-2 Spike Omicron Variants: Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape.

Viruses. 2025-5-22

[4]
AlphaFold2 Modeling and Molecular Dynamics Simulations of the Conformational Ensembles for the SARS-CoV-2 Spike Omicron JN.1, KP.2 and KP.3 Variants: Mutational Profiling of Binding Energetics Reveals Epistatic Drivers of the ACE2 Affinity and Escape Hotspots of Antibody Resistance.

Viruses. 2024-9-13

[5]
AlphaFold2 Predictions of Conformational Ensembles and Atomistic Simulations of the SARS-CoV-2 Spike XBB Lineages Reveal Epistatic Couplings between Convergent Mutational Hotspots that Control ACE2 Affinity.

J Phys Chem B. 2024-5-16

[6]
TMEM106B Supports Viral Entry and Syncytia Formation Mediated by the Spike Proteins From Omicron BA.2.86 and JN.1.

J Med Virol. 2025-7

[7]
Critical amino acid residues in human ACE2 for SARS-CoV-2 spike protein binding and virus entry.

Microbiol Spectr. 2025-6-20

[8]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[9]
Endemic coronavirus infection is associated with SARS-CoV-2 Fc receptor-binding antibodies.

J Virol. 2025-6-17

[10]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

本文引用的文献

[1]
production of engineered ACE2 decoy protects lungs from SARS-CoV-2 infection.

Mol Ther Nucleic Acids. 2025-1-29

[2]
Evaluation of population immunity against SARS-CoV-2 variants, EG.5.1, FY.4, BA.2.86, JN.1, JN.1.4, and KP.3.1.1 using samples from two health demographic surveillance systems in Kenya.

BMC Infect Dis. 2024-12-28

[3]
SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T cells to produce more IL-2.

Front Immunol. 2024

[4]
Fibrin drives thromboinflammation and neuropathology in COVID-19.

Nature. 2024-9

[5]
Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics.

Heliyon. 2024-7-14

[6]
The rising SARS-CoV-2 JN.1 variant: evolution, infectivity, immune escape, and response strategies.

MedComm (2020). 2024-7-29

[7]
XBB.1, BQ1.1 and atypical BA.4.6/XBB.1 recombinants predominate current SARS-CoV-2 Wavelets with flu-like symptoms in Cameroon: A snapshot from genomic surveillance.

PLOS Glob Public Health. 2024-5-10

[8]
The Emergence and Evolution of SARS-CoV-2.

Annu Rev Virol. 2024-9

[9]
Multifaceted role of SARS-CoV-2 structural proteins in lung injury.

Front Immunol. 2024-2-5

[10]
Molecular insights into the adaptive evolution of SARS-CoV-2 spike protein.

J Infect. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索