文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

桥粒芯糖蛋白3(DSG3)通过AKT/糖原合成酶激酶3β/β-连环蛋白信号通路促进膀胱癌的生长和转移。

DSG3 promotes bladder cancer growth and metastasis via AKT/GSK3β/β-catenin pathway.

作者信息

Wang Tao, Du Anqi, Peng Yuan, Yin Jianjian, Sun Guoqiang, Yu Yihang, Sun Zhangran, Chang Qi, Gong Kaidi, Han Shengna, Zhang Lirong, Song Dongkui

机构信息

Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.

Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.

出版信息

J Transl Med. 2025 Jul 2;23(1):729. doi: 10.1186/s12967-025-06754-2.


DOI:10.1186/s12967-025-06754-2
PMID:40605005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12225158/
Abstract

BACKGROUND: The high metastasis rate is the primary contributor to the high mortality rate associated with muscle-invasive bladder cancer (MIBC). Therefore, elucidating the mechanisms involved and identifying potential therapeutic targets are crucial for improving the overall prognosis of bladder cancer (BLCA). METHODS: We used consensus clustering and differential gene expression analyses to identify the key gene desmoglein 3 (DSG3). Subsequently, we examined the expression of DSG3 in BLCA and its association with the clinical characteristics and prognosis. Comprehensive in vitro and in vivo experiments were conducted to elucidate the functions of DSG3 and the reasons behind the upregulation of DSG3 in BLCA, as well as to investigate the mechanisms by which DSG3 promotes metastasis. RESULTS: DSG3 was markedly upregulated in BLCA, particularly in the basal/squamous (Ba/Sq) subtype. Importantly, elevated DSG3 levels demonstrated a strong association with aggressive tumor behavior and poorer clinical outcomes. Functional experiments revealed that DSG3 knockdown significantly impeded cancer stemness characteristics, epithelial-mesenchymal transition (EMT), migration, and invasion capabilities in vitro, whereas in vivo studies showed marked reductions in tumorigenesis and lung metastasis. Mechanistic investigations indicated that STAT3 transcriptionally activated DSG3 expression in BLCA cells. Downstream pathway analysis further showed that DSG3 promoted AKT phosphorylation, thereby inhibiting GSK3β activity. This molecular pathway promoted β-catenin nuclear translocation, thereby triggering transcriptional upregulation of SOX2 and MMP7 expression, ultimately mediating BLCA progression. CONCLUSION: Our study demonstrates a novel mechanism by which DSG3 enhances cancer stemness, EMT, migration, and invasive capabilities through upregulation of SOX2 and MMP7 expression through the AKT/GSK3β/β-catenin pathway, ultimately leading to growth and metastasis of BLCA. This study elucidated the role of DSG3 in BLCA and its mechanism in activating the Wnt/β-catenin signaling pathway. We anticipate this study will identify potential biomarkers for predicting progression and for assessing prognosis. Furthermore, this study introduced a novel intervention target for BLCA treatment.

摘要

背景:高转移率是肌层浸润性膀胱癌(MIBC)高死亡率的主要原因。因此,阐明其相关机制并确定潜在治疗靶点对于改善膀胱癌(BLCA)的总体预后至关重要。 方法:我们使用共识聚类和差异基因表达分析来鉴定关键基因桥粒芯糖蛋白3(DSG3)。随后,我们检测了DSG3在BLCA中的表达及其与临床特征和预后的关系。进行了全面的体外和体内实验,以阐明DSG3的功能、BLCA中DSG3上调的原因,以及DSG3促进转移的机制。 结果:DSG3在BLCA中显著上调,尤其是在基底/鳞状(Ba/Sq)亚型中。重要的是,DSG3水平升高与侵袭性肿瘤行为和较差的临床结果密切相关。功能实验表明,敲低DSG3可显著阻碍体外癌干细胞特性、上皮-间质转化(EMT)、迁移和侵袭能力,而体内研究显示肿瘤发生和肺转移明显减少。机制研究表明,STAT3在BLCA细胞中转录激活DSG3表达。下游通路分析进一步表明,DSG3促进AKT磷酸化,从而抑制GSK3β活性。该分子通路促进β-连环蛋白核转位,从而触发SOX2和MMP7表达的转录上调,最终介导BLCA进展。 结论:我们的研究揭示了一种新机制,即DSG3通过AKT/GSK3β/β-连环蛋白通路上调SOX2和MMP7表达,从而增强癌干细胞特性、EMT、迁移和侵袭能力,最终导致BLCA生长和转移。本研究阐明了DSG3在BLCA中的作用及其激活Wnt/β-连环蛋白信号通路的机制。我们预计这项研究将识别出预测进展和评估预后的潜在生物标志物。此外,本研究为BLCA治疗引入了一个新的干预靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/28356a893f2b/12967_2025_6754_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/640fb3ba7f7f/12967_2025_6754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/1c07ea805050/12967_2025_6754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/ab611a352ccc/12967_2025_6754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/5d9b0c0189b9/12967_2025_6754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/209cb0d603b0/12967_2025_6754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/dbafe3e04a97/12967_2025_6754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/f068c4ecf12e/12967_2025_6754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/ad0645b2d694/12967_2025_6754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/28356a893f2b/12967_2025_6754_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/640fb3ba7f7f/12967_2025_6754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/1c07ea805050/12967_2025_6754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/ab611a352ccc/12967_2025_6754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/5d9b0c0189b9/12967_2025_6754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/209cb0d603b0/12967_2025_6754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/dbafe3e04a97/12967_2025_6754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/f068c4ecf12e/12967_2025_6754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/ad0645b2d694/12967_2025_6754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/12225158/28356a893f2b/12967_2025_6754_Fig9_HTML.jpg

相似文献

[1]
DSG3 promotes bladder cancer growth and metastasis via AKT/GSK3β/β-catenin pathway.

J Transl Med. 2025-7-2

[2]
Caveolin-1 inhibits the proliferation and invasion of lung adenocarcinoma via EGFR degradation.

Sci Rep. 2025-7-1

[3]
BAIAP2 as a driver of tumor progression in urothelial bladder cancer.

BMC Cancer. 2025-7-1

[4]
Hypoxia-induced PGK1 expression promotes esophageal squamous cell carcinoma progression via stimulating MYH9-mediated GSK3β/β-catenin signalling.

Clin Transl Med. 2025-6

[5]
Targeting Drp1 inhibits ESCC progression via the ROS-PGC1-α-Nrf1/2 pathway.

J Transl Med. 2025-6-17

[6]
Pathway-based cancer transcriptome deciphers a high-resolution intrinsic heterogeneity within bladder cancer classification.

J Transl Med. 2025-6-17

[7]
Upregulated SAE1 Drives Tumorigenesis and Is Associated with Poor Clinical Outcomes in Breast Cancer.

Breast J. 2024-6-30

[8]
Long-term resident adipose-derived stromal stem cells in the microenvironment remodeling BLCA cell stemness and EMT promotes bladder cancer progression.

Sci Rep. 2025-7-2

[9]
Knockdown of PLK1 suppresses malignant phenotypes and tumor growth in bladder cancer via activating Hippo pathway.

Gen Physiol Biophys. 2025-7

[10]
Role of Mesenchymal Markers in Colorectal Cancer Metastasis.

Mol Biol Rep. 2025-7-4

本文引用的文献

[1]
Cancer statistics, 2025.

CA Cancer J Clin. 2025

[2]
The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide.

Int J Cancer. 2025-4-1

[3]
Mutant TP53 promotes invasion of lung cancer cells by regulating desmoglein 3.

J Cancer Res Clin Oncol. 2024-6-20

[4]
Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy.

J Hematol Oncol. 2024-6-18

[5]
Comprehensive Urinary Proteome Profiling Analysis Identifies Diagnosis and Relapse Surveillance Biomarkers for Bladder Cancer.

J Proteome Res. 2024-6-7

[6]
Advances in diagnosis and treatment of bladder cancer.

BMJ. 2024-2-12

[7]
Comparative Transcriptome Analysis Identifies Desmoglein-3 as a Potential Oncogene in Oral Cancer Cells.

Cells. 2023-11-26

[8]
PKCι induces differential phosphorylation of STAT3 to modify STAT3-related signaling pathways in pancreatic cancer cells.

J Cell Commun Signal. 2023-12

[9]
The Axin scaffold protects the kinase GSK3β from cross-pathway inhibition.

Elife. 2023-8-7

[10]
Interleukin-37 inhibits desmoglein-3 endocytosis and keratinocyte dissociation via upregulation of Caveolin-1 and inhibition of the STAT3 pathway.

J Eur Acad Dermatol Venereol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索