Suppr超能文献

基于活动的可自动化复杂性单元评分方法,作为一种针对病理学人工智能解决方案成果货币化的特定任务模型方法。

The Automatable Activity-Based Approach to Complexity Unit Scoring as a task-specific model approach to monetizing outcomes of pathology artificial intelligence solutions.

作者信息

Pantelakos Stavros, Nifora Martha, Agrogiannis Georgios

机构信息

1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.

Department of Cytopathology, Evaggelismos General Hospital of Athens, Athens, Greece.

出版信息

J Pathol Transl Med. 2025 Jul;59(4):225-234. doi: 10.4132/jptm.2025.04.15. Epub 2025 Jul 3.

Abstract

BACKGROUND

Cost-containment policies are increasingly affecting decision-making in healthcare. In this context, the need for monetization of digital health interventions has been recently emphasized. Previous studies have attempted to extrapolate cost containment in conjunction with the implementation of digital pathology solutions mostly on the basis of operational cost savings or diagnostic error reduction. However, no study has attempted to link a wider spectrum of potential diagnostic tasks performed by artificial intelligence algorithms to financial figures.

METHODS

Herein, we employ a workload measurement tool for the purpose of monetizing particular outcomes associated with the implementation of a pathology artificial intelligence solution. A hundred and thirty-two prostate core biopsy samples were encoded for workload using the Automatable Activity-Based Approach to Complexity Unit Scoring. Subsequently, avoided workload, full-time equivalent gains, and corresponding cost savings were calculated assuming full clinical deployment of a well-developed prostate cancer screening tool.

RESULTS

For a fixed percentage of negative cores and a steady yearly workload of prostate core biopsies, the estimated total avoided workload amounted to 4,291 complexity units per year, with an average avoidance of 16.25 complexity units per ascension number. The calculated full-time equivalent gains were 0.12, whereas projected cost savings were as high as €2,402.34 per year or €0.55 per complexity unit, which in turn would yield an average of €8.93 per ascension number.

CONCLUSIONS

The Automatable Activity-Based Approach to Complexity Unit Scoring appears to be a suitable economic evaluation tool for assessing the possible implementation of task-specific artificial intelligence solutions in a given histopathology laboratory or group of laboratories, considering it is a task-specific workload measurement tool per design.

摘要

背景

成本控制政策日益影响医疗保健领域的决策。在此背景下,近期人们强调了数字健康干预措施货币化的必要性。以往的研究大多基于运营成本节约或诊断错误减少,试图推断数字病理解决方案实施过程中的成本控制情况。然而,尚无研究尝试将人工智能算法执行的更广泛潜在诊断任务与财务数据联系起来。

方法

在此,我们使用一种工作量测量工具,以便将与病理人工智能解决方案实施相关的特定结果货币化。使用基于可自动化活动的复杂性单位评分方法,对132份前列腺穿刺活检样本进行工作量编码。随后,假设全面临床部署一种成熟的前列腺癌筛查工具,计算避免的工作量、全职等效增益以及相应的成本节约。

结果

对于固定比例的阴性核心样本以及稳定的前列腺穿刺活检年度工作量,估计每年避免的总工作量达4291个复杂性单位,每次升序编号平均避免16.25个复杂性单位。计算得出的全职等效增益为0.12,预计每年成本节约高达2402.34欧元,或每个复杂性单位0.55欧元,进而每次升序编号平均节约8.93欧元。

结论

基于可自动化活动的复杂性单位评分方法似乎是一种合适的经济评估工具,可用于评估在给定的组织病理学实验室或一组实验室中,特定任务的人工智能解决方案的可能实施情况,因为从设计角度来看,它是一种特定任务的工作量测量工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba0/12264476/4819f8c569e3/jptm-2025-04-15f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验