Chen Wenlong, Zhang Shuixian, Huang Chunxu, Hu Zhiming, Cao Ting, Mou Jun, Gu Xinxia, Sun Meiling, Liu Jie
Center for Infectious Disease and Vaccine Research, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
Department of Healthcare Intelligence, University of North America, Fairfax, VA, United States.
Front Microbiol. 2025 Jun 18;16:1622623. doi: 10.3389/fmicb.2025.1622623. eCollection 2025.
The escalating threat of methicillin-resistant (MRSA) necessitates novel therapeutic strategies. Our previous work suggested that an extract from leaves (ECPL) inhibits MRSA by targeting the cell division protein FtsZ. Here, guided by anti-MRSA activity, we isolated three compounds from ECPL: asiatic acid (AA), maslinic acid (MA), and ursolic acid (UA). They exhibited antibacterial activity against MRSA and induced cell elongation, indicative of division arrest. Time-kill assays showed AA and MA are bactericides, while UA is bacteriostatic. Mechanistically, these compounds disrupt cell division by differentially affecting FtsZ dynamics: AA promotes polymerization, whereas MA and UA inhibit it. SPR analysis showed direct FtsZ binding to AA (Kd = 2.4 μM), MA (Kd = 9.8 μM), and UA (Kd = 0.7 μM). Molecular docking predicted a shared FtsZ binding pocket but revealed that AA adopts a distinct conformation driven by unique interactions, including a hydrogen bond with Arg191-an interaction not observed for MA or UA, which instead form hydrogen bonds with Thr265 and Thr309. Despite these divergent effects on polymerization and distinct binding modes, all compounds ultimately disrupted Z-ring assembly and septum formation. In a murine skin infection model, AA, selected for its bactericidal activity and unique FtsZ modulation mechanism, significantly reduced bacterial burden and accelerated wound healing. Collectively, our findings validate these compounds as direct FtsZ-targeting agents and establish AA as a promising anti-MRSA lead compound with a novel mechanism disrupting the bacterial divisome.
耐甲氧西林金黄色葡萄球菌(MRSA)带来的威胁不断升级,因此需要新的治疗策略。我们之前的研究表明,一种树叶提取物(ECPL)通过靶向细胞分裂蛋白FtsZ来抑制MRSA。在此,我们以抗MRSA活性为导向,从ECPL中分离出三种化合物:积雪草苷(AA)、齐墩果酸(MA)和熊果酸(UA)。它们对MRSA表现出抗菌活性,并诱导细胞伸长,这表明细胞分裂受阻。时间杀菌试验表明,AA和MA是杀菌剂,而UA是抑菌剂。从机制上讲,这些化合物通过不同程度地影响FtsZ动态来破坏细胞分裂:AA促进聚合,而MA和UA抑制聚合。表面等离子体共振(SPR)分析表明,FtsZ与AA(解离常数Kd = 2.4 μM)、MA(Kd = 9.8 μM)和UA(Kd = 0.7 μM)直接结合。分子对接预测了一个共享的FtsZ结合口袋,但发现AA通过独特的相互作用呈现出不同的构象,包括与Arg191形成氢键——这是MA或UA未观察到的相互作用,MA和UA反而与Thr265和Thr309形成氢键。尽管这些化合物对聚合有不同影响且结合模式不同,但最终都破坏了Z环组装和隔膜形成。在小鼠皮肤感染模型中,因其杀菌活性和独特的FtsZ调节机制而被选中的AA,显著降低了细菌载量并加速了伤口愈合。总的来说,我们的研究结果证实了这些化合物是直接靶向FtsZ的药物,并确定AA是一种有前景的抗MRSA先导化合物,其具有破坏细菌分裂体的新机制。