Suppr超能文献

抗生素耐药性:一种威胁公众健康的关键微生物生存机制。

Antibiotic resistance: A key microbial survival mechanism that threatens public health.

机构信息

David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.

David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.

出版信息

Cell Host Microbe. 2024 Jun 12;32(6):837-851. doi: 10.1016/j.chom.2024.05.015.

Abstract

Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.

摘要

抗生素耐药性(AMR)是一个全球性的公共卫生威胁,挑战了抗生素在对抗细菌感染方面的有效性。AMR 也是细菌进化出的最重要的生存特征之一。抗生素在数亿年前作为微生物产生的有利的次级代谢产物而出现。因此,AMR 同样古老,并且深深地嵌入了细菌的遗传结构中。人类将抗生素用于疾病治疗,这创造了选择压力,促使新的耐药机制通过环境中的细菌种群、动物和人类的进化而出现,并使现有的耐药机制得以动员。这种抵抗元素的综合网络在遗传上是复杂的,在机制上是多样化的。要解决这种细菌的生存模式,就需要创新和投资,以确保未来继续使用抗生素。从开发新疗法到应用人工智能监测 AMR 和发现新药,各种策略都被用于应对日益严重的 AMR 危机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验