Suppr超能文献

通过利用基因本体先验知识和基于bin的组合优化来优化单核苷酸多态性(SNP)子集,增强基因组预测。

Enhancing genomic prediction in with optimized SNP subset by leveraging gene ontology priors and bin-based combinatorial optimization.

作者信息

Ba Qingfang, Zhou Heng, Yuan Zheming, Dai Zhijun

机构信息

Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha, China.

出版信息

Front Bioinform. 2025 Jun 18;5:1607119. doi: 10.3389/fbinf.2025.1607119. eCollection 2025.

Abstract

With the rapid development of high-density molecular marker chips and high-throughput sequencing technologies, genomic selection/prediction (GS/GP) has been widely applied in plant breeding. , as a common model organism, provides important resources for dissecting genetic variation and evolutionary mechanisms of complex traits. Quantitative traits are typically influenced by multiple minor-effect genes, which are often functionally related and can be enriched within gene ontology (GO) pathways. However, optimizing marker subsets associated with these pathways to enhance GP performance remains challenging. In this study, we propose an improved GS framework called binGO-GS by integrating GO-based biological priors with a novel bin-based combinatorial SNP subset selection strategy. We evaluated the performance of binGO-GS on nine quantitative traits from two datasets, comprising nearly 1,000 samples and over 1.8 million SNPs. Compared with using either the full marker set or randomly selected markers with Genomic BLUP (GBLUP), binGO-GS achieved statistically significant improvements in prediction accuracy across all traits. Similar improvements were observed across six additional regression models when applying binGO-GS instead of the full marker set. Furthermore, the selected markers for identical or similar morphological traits exhibited consistent patterns in quantity and genomic distribution, supporting the polygenic model of complex quantitative traits driven by minor-effect genes. Taken together, binGO-GS offers a powerful and interpretable approach to enhance GS performance, providing a methodological reference for accelerating plant breeding and germplasm innovation.

摘要

随着高密度分子标记芯片和高通量测序技术的快速发展,基因组选择/预测(GS/GP)已在植物育种中广泛应用。作为一种常见的模式生物,为剖析复杂性状的遗传变异和进化机制提供了重要资源。数量性状通常受多个微效基因影响,这些基因往往在功能上相关且可在基因本体(GO)途径中富集。然而,优化与这些途径相关的标记子集以提高GP性能仍然具有挑战性。在本研究中,我们通过将基于GO的生物学先验与一种新颖的基于bin的组合SNP子集选择策略相结合,提出了一种改进的GS框架,称为binGO-GS。我们在来自两个数据集的九个数量性状上评估了binGO-GS的性能,这些数据集包含近1000个样本和超过180万个SNP。与使用全标记集或随机选择的标记结合基因组最佳线性无偏预测(GBLUP)相比,binGO-GS在所有性状的预测准确性上均取得了统计学上的显著提高。当应用binGO-GS而非全标记集时,在另外六个回归模型中也观察到了类似的改进。此外,针对相同或相似形态性状选择的标记在数量和基因组分布上呈现出一致的模式,支持了由微效基因驱动的复杂数量性状的多基因模型。综上所述,binGO-GS提供了一种强大且可解释的方法来提高GS性能,为加速植物育种和种质创新提供了方法学参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c47/12213587/685fcdac947d/fbinf-05-1607119-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验