文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用腮腺计算机断层扫描图像上的影像组学和机器学习技术创建干燥综合征诊断预测模型的初步方法。

Preliminary approach to creation of a prediction model for diagnosis of Sjögren's syndrome using radiomics and machine learning techniques on computed tomography images of the parotid glands.

作者信息

Kise Yoshitaka, Fukuda Motoki, Shibata Takuya, Funakoshi Takuma, Ariji Yoshiko, Ariji Eiichiro

机构信息

Department of Oral and Maxillofacial Radiology, Aichi Gakuin University School of Dentistry, Nagoya, Japan.

Department of Oral Radiology, School of Dentistry, Osaka Dental University, Osaka, Japan.

出版信息

Imaging Sci Dent. 2025 Jun;55(2):189-196. doi: 10.5624/isd.20250022. Epub 2025 Apr 28.


DOI:10.5624/isd.20250022
PMID:40607071
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12210114/
Abstract

PURPOSE: The aim of this research was to develop a prediction model for diagnosis of Sjögren's syndrome using radiomics and machine learning techniques applied to computed tomography images of the parotid glands and to assess its efficacy by temporal validation. MATERIALS AND METHODS: In total, 132 parotid glands from 66 subjects (33 patients with Sjögren's syndrome and 33 controls) were analyzed. Radiomics features were extracted from manually segmented parotid glands using 3D Slicer. The volume data for 108 parotid glands were chronologically assigned to the training dataset, and the features extracted were imported into Prediction One (Sony Network Communications Inc, Tokyo, Japan). A prediction model was automatically generated. The area under the curve (AUC), accuracy, precision, recall, and F-value were calculated for internal validation. Temporal validation was performed using 24 images of the parotid glands obtained later. RESULTS: A total of 129 radiomics features were extracted, including 18 first-order, 14 shape, and 75 texture features. The internal validation test showed high performance, with an AUC of 0.92, accuracy of 0.88, precision of 0.90, recall of 0.85, and an F-value of 0.88. Temporal validation testing also showed high performance, with an AUC of 0.96. accuracy of 0.88, precision of 0.85, recall of 0.92, and an F-value of 0.88. CONCLUSION: The prediction model effectively differentiated Sjögren's syndrome using radiomics and machine learning. Use of Prediction One significantly streamlined the workflow, including analysis of radiomics, creation of the prediction model, and evaluation of performance, while substantially reducing the time required.

摘要

目的:本研究旨在利用放射组学和机器学习技术,针对腮腺计算机断层扫描图像开发一种用于诊断干燥综合征的预测模型,并通过时间验证评估其有效性。 材料与方法:共分析了66名受试者(33例干燥综合征患者和33名对照)的132个腮腺。使用3D Slicer从手动分割的腮腺中提取放射组学特征。将108个腮腺的体积数据按时间顺序分配到训练数据集,并将提取的特征导入Prediction One(日本东京索尼网络通信公司)。自动生成预测模型。计算曲线下面积(AUC)、准确率、精确率、召回率和F值用于内部验证。使用后来获得的24张腮腺图像进行时间验证。 结果:共提取了129个放射组学特征,包括18个一阶特征、14个形状特征和75个纹理特征。内部验证测试显示性能良好,AUC为0.92,准确率为0.88,精确率为0.90,召回率为0.85,F值为0.88。时间验证测试也显示性能良好,AUC为0.96,准确率为0.88,精确率为0.85,召回率为0.92,F值为0.88。 结论:该预测模型利用放射组学和机器学习有效地鉴别了干燥综合征。使用Prediction One显著简化了工作流程,包括放射组学分析、预测模型创建和性能评估,同时大幅减少了所需时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/c8eae75bc8f7/isd-55-189-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/e4396fbf005a/isd-55-189-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/a11bb795b05f/isd-55-189-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/e522d6ecba2b/isd-55-189-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/6977fab8cea6/isd-55-189-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/c8eae75bc8f7/isd-55-189-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/e4396fbf005a/isd-55-189-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/a11bb795b05f/isd-55-189-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/e522d6ecba2b/isd-55-189-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/6977fab8cea6/isd-55-189-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8c/12210114/c8eae75bc8f7/isd-55-189-g005.jpg

相似文献

[1]
Preliminary approach to creation of a prediction model for diagnosis of Sjögren's syndrome using radiomics and machine learning techniques on computed tomography images of the parotid glands.

Imaging Sci Dent. 2025-6

[2]
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.

Front Oncol. 2025-6-19

[3]
Fully Automated Online Adaptive Radiation Therapy Decision-Making for Cervical Cancer Using Artificial Intelligence.

Int J Radiat Oncol Biol Phys. 2025-7-15

[4]
Preoperative prediction of renal fibrous capsule invasion in clear cell renal cell carcinoma using CT-based radiomics model.

Br J Radiol. 2024-9-1

[5]
Prediction of High-risk Capsule Characteristics for Recurrence of Pleomorphic Adenoma in the Parotid Gland Based on Habitat Imaging and Peritumoral Radiomics: A Two-center Study.

Acad Radiol. 2025-2-10

[6]
Prediction of Insulin Resistance in Nondiabetic Population Using LightGBM and Cohort Validation of Its Clinical Value: Cross-Sectional and Retrospective Cohort Study.

JMIR Med Inform. 2025-6-13

[7]
Integrating CT radiomics and clinical features using machine learning to predict post-COVID pulmonary fibrosis.

Respir Res. 2025-7-2

[8]
Multi-machine learning model based on radiomics features to predict prognosis of muscle-invasive bladder cancer.

BMC Cancer. 2025-7-1

[9]
Automatic recognition and differentiation of pulmonary contusion and bacterial pneumonia based on deep learning and radiomics.

BMC Med Imaging. 2025-7-1

[10]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

本文引用的文献

[1]
Artificial intelligence for osteoporosis detection on panoramic radiography: A systematic review and meta analysis.

J Dent. 2025-5

[2]
Advanced AI-driven detection of interproximal caries in bitewing radiographs using YOLOv8.

Sci Rep. 2025-2-7

[3]
Texture Analysis in Volumetric Imaging for Dentomaxillofacial Radiology: Transforming Diagnostic Approaches and Future Directions.

J Imaging. 2024-10-22

[4]
Performance of radiomics in the differential diagnosis of parotid tumors: a systematic review.

Front Oncol. 2024-7-25

[5]
A cycle generative adversarial network for generating synthetic contrast-enhanced computed tomographic images from non-contrast images in the internal jugular lymph node-bearing area.

Odontology. 2024-10

[6]
Machine Learning Model Based on Radiomics for Preoperative Differentiation of Jaw Cystic Lesions.

Otolaryngol Head Neck Surg. 2024-6

[7]
Magnetic resonance imaging-based radiomics and deep learning models for predicting lymph node metastasis of squamous cell carcinoma of the tongue.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-7

[8]
Evaluation of bone marrow invasion on the machine learning of 18 F-FDG PET texture analysis in lower gingival squamous cell carcinoma.

Nucl Med Commun. 2024-5-1

[9]
Enhanced CT-based texture analysis and radiomics score for differentiation of pleomorphic adenoma, basal cell adenoma, and Warthin tumor of the parotid gland.

Dentomaxillofac Radiol. 2023-1

[10]
Radiomics in Head and Neck Cancer Outcome Predictions.

Diagnostics (Basel). 2022-11-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索