Liu Guangchao, Pal Uttam, Samal Sanket, Espenship Michael F, Li Yuanhe, Lee Won-June, Ogunfowora Lawal Adewale, You Liyan, Laskin Julia, Mei Jianguo
James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202510411. doi: 10.1002/anie.202510411. Epub 2025 Jul 11.
The recent discovery of highly conductive, solution-processable, n-doped poly(benzodifurandione) (n-PBDF) has significantly pushed the boundaries of organic electronics. However, to maximize its practical impact, an efficient, scalable and cost-effective synthetic method is essential. Initially, n-PBDF was synthesized via duroquinone-mediated or copper-catalyzed polymerizations, but these methods required prolonged dialysis, limiting their scalability. Our recent SeO-catalyzed polymerization improved efficiency but still necessitated centrifugation and filtration to remove solid selenium byproducts. In this work, we introduce a highly efficient molybdenum trioxide (MoO)-catalyzed polymerization of n-PBDF. Remarkably, MoO at parts-per-million (ppm) concentrations achieves near-quantitative monomer conversion (>99% by NMR), eliminating the need for purification. Kinetic studies demonstrate that this polymerization follows a chain-growth mechanism, enabling the synthesis of high-quality n-PBDF polymers with controlled particle sizes and block copolymers. Mechanistic investigations reveal that MoO mediates an oxidative pathway involving dimethyl sulfoxide (DMSO), with dimethyl sulfide (DMS) identified as the reduction product. This innovation not only provides a scalable, low-cost route to high-quality n-PBDF but also unlocks new synthetic opportunities, significantly expanding the synthetic toolbox for functional polymers.
最近发现的具有高导电性、可溶液加工的n型掺杂聚(苯并二呋喃二酮)(n-PBDF)显著拓展了有机电子学的边界。然而,为了使其实际影响最大化,一种高效、可扩展且具有成本效益的合成方法至关重要。最初,n-PBDF是通过对苯二酚介导或铜催化的聚合反应合成的,但这些方法需要长时间的透析,限制了它们的可扩展性。我们最近的二氧化硒催化聚合反应提高了效率,但仍需要离心和过滤以去除固体硒副产物。在这项工作中,我们介绍了一种高效的三氧化钼(MoO)催化的n-PBDF聚合反应。值得注意的是,百万分之几(ppm)浓度的MoO能实现近乎定量的单体转化率(通过核磁共振>99%),无需纯化。动力学研究表明,这种聚合反应遵循链增长机制,能够合成具有可控粒径的高质量n-PBDF聚合物和嵌段共聚物。机理研究表明,MoO介导了一条涉及二甲基亚砜(DMSO)的氧化途径,二甲基硫醚(DMS)被确定为还原产物。这一创新不仅为高质量n-PBDF提供了一种可扩展、低成本的合成路线,还开启了新的合成机会,显著扩展了功能聚合物的合成工具箱。