Suppr超能文献

还原掺杂抑制了氮掺杂聚(苯并二呋喃二酮)(n-PBDF)中异构化衍生结构缺陷的形成。

Reductive Doping Inhibits the Formation of Isomerization-Derived Structural Defects in N-doped Poly(benzodifurandione) (n-PBDF).

作者信息

Hwang Jinhyo, Zhao Qiyuan, Ahmed Mustafa, Yakisan Alexander C, Espenship Michael F, Laskin Julia, Savoie Brett M, Mei Jianguo

机构信息

Department of Chemistry, Purdue University, 47907, West Lafayette, IN, USA.

Davidson School of Chemical Engineering, Purdue University, 47907, West Lafayette, IN, USA.

出版信息

Angew Chem Int Ed Engl. 2024 Apr 24;63(18):e202401465. doi: 10.1002/anie.202401465. Epub 2024 Mar 27.

Abstract

Recently, solution-processable n-doped poly(benzodifurandione) (n-PBDF) has been made through in-situ oxidative polymerization and reductive doping, which exhibited exceptionally high electrical conductivities and optical transparency. The discovery of n-PBDF is considered a breakthrough in the field of organic semiconductors. In the initial report, the possibility of structural defect formation in n-PBDF was proposed, based on the observation of structural isomerization from (E)-2H,2'H-[3,3'-bibenzofuranylidene]-2,2'-dione (isoxindigo) to chromeno[4,3-c]chromene-5,11-dione (dibenzonaphthyrone) in the dimer model reactions. In this study, we present clear evidence that structural isomerization is inhibited during polymerization. We reveal that the dimer (BFD1) and the trimer (BFD2) can be reductively doped by several mechanisms, including hydride transfer, forming charge transfer complexes (CTC) or undergoing an integer charge transfer (ICT) with reactants available during polymerization. Once the hydride transfer adducts, the CTC, or the ICT product forms, structural isomerization can be effectively prevented even at elevated temperatures. Our findings provide a mechanistic understanding of why isomerization-derived structural defects are absent in n-PBDF backbone. It lays a solid foundation for the future development of n-PBDF as a benchmark polymer for organic electronics and beyond.

摘要

最近,通过原位氧化聚合和还原掺杂制备了可溶液加工的n型掺杂聚(苯并二呋喃二酮)(n-PBDF),其表现出极高的电导率和光学透明度。n-PBDF的发现被认为是有机半导体领域的一项突破。在最初的报告中,基于在二聚体模型反应中观察到从(E)-2H,2'H-[3,3'-联苯并呋喃亚基]-2,2'-二酮(异靛蓝)到色烯并[4,3-c]色烯-5,11-二酮(二苯并萘啶酮)的结构异构化,提出了n-PBDF中形成结构缺陷的可能性。在本研究中,我们提供了明确的证据表明在聚合过程中结构异构化受到抑制。我们揭示二聚体(BFD1)和三聚体(BFD2)可以通过几种机制进行还原掺杂,包括氢化物转移、形成电荷转移络合物(CTC)或与聚合过程中可用的反应物进行整数电荷转移(ICT)。一旦氢化物转移加合物、CTC或ICT产物形成,即使在高温下也能有效防止结构异构化。我们的发现为理解n-PBDF主链中为何不存在异构化衍生的结构缺陷提供了一种机制。它为n-PBDF作为有机电子及其他领域的基准聚合物的未来发展奠定了坚实的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验