Wilkes Rebecca A, Miller Tarryn E, Waldbauer Jacob, Zhou Nanqing, Zhang Lichun, DiBiase Beth N, Kamat Neha P, Aristilde Ludmilla, Beckham Gregg T, Werner Allison Z
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, United States.
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637-5418, United States.
ACS Synth Biol. 2025 Jul 18;14(7):2739-2752. doi: 10.1021/acssynbio.5c00171. Epub 2025 Jul 3.
Membrane vesicle (MV) production is a natural phenomenon in Gram-negative bacteria and represents an emerging synthetic biology tool for the secretion of biomolecules or bioproducts. Manipulation of membrane components has proven successful in enhancing MV production. However, the impact of membrane disruptions on strain fitness and protein composition warrants further investigation for the use of MVs in industrial bioprocesses. Here, we identify and characterize two genetic engineering strategies for inducing hypervesiculation─deletion of genes for the outer membrane porin OprF or the lipoprotein OprI─in the commonly used platform KT2440. Deletion of generated up to a 1.5-fold increase in MVs, larger MVs with a greater proportion of outer membrane proteins, and no significant impact on strain fitness compared to wild type. In contrast, deletion of relative to wild type, generated up to a 4-fold increase in MVs but diminished growth, permeabilized membranes, and increased cytosolic protein packaging. Both hypervesiculation phenotypes increased nontargeted and MV-targeted mNeonGreen extracellular signal by up to 6-fold, demonstrating vesiculation as a mechanism for protein secretion. Despite increased blebbing of MVs from gene deletions, proteins involved in membrane biosynthesis were not elevated relative to wild type. Overexpression of which initiates glycerophospholipid biosynthesis, in the Δ background improved the membrane integrity by 37% and maintained MV formation, highlighting the importance of membrane biosynthesis in restoring the membrane in hypervesiculating strains. Together, this study provides genetic engineering strategies with corresponding phenotypic outcomes toward providing a synthetic biology toolset for MV deployment in .
膜泡(MV)的产生是革兰氏阴性菌中的一种自然现象,并且是一种新兴的用于生物分子或生物产品分泌的合成生物学工具。事实证明,对膜成分进行操作可成功提高MV的产量。然而,膜破坏对菌株适应性和蛋白质组成的影响,对于在工业生物过程中使用MV而言,仍需进一步研究。在此,我们在常用平台KT2440中鉴定并表征了两种诱导超囊泡化的基因工程策略,即删除外膜孔蛋白OprF或脂蛋白OprI的基因。与野生型相比,删除 可使MV产量增加高达1.5倍,产生更大的MV且外膜蛋白比例更高,并且对菌株适应性没有显著影响。相比之下,相对于野生型删除 可使MV产量增加高达4倍,但生长减弱、膜通透性增加且胞质蛋白包装增加。两种超囊泡化表型均使非靶向和MV靶向的mNeonGreen细胞外信号增加高达6倍,证明囊泡化是一种蛋白质分泌机制。尽管基因缺失导致MV的起泡增加,但与野生型相比,参与膜生物合成的蛋白质并未升高。在Δ 背景中过表达启动甘油磷脂生物合成的 可使膜完整性提高37%并维持MV形成,突出了膜生物合成在恢复超囊泡化菌株的膜方面的重要性。总之,本研究提供了具有相应表型结果的基因工程策略,旨在为在 中部署MV提供一套合成生物学工具。