Li Yang Grace, Haeusser Daniel, Margolin William, Christie Peter J
Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth Houston, Houston, Texas, USA.
J Bacteriol. 2025 Jul 24;207(7):e0016825. doi: 10.1128/jb.00168-25. Epub 2025 Jul 3.
The bacterial type IV secretion systems (T4SS) are medically problematic for their roles in the dissemination of mobile genetic elements or effector proteins, but they also have great potential for new antimicrobial therapies. Recent studies have deployed the T4SS subfamily of conjugation systems to deliver gene editing CRISPR/Cas systems to disrupt drug resistance genes or kill targeted bacterial recipients. However, the therapeutic potential of conjugative CRISPR/Cas delivery is compromised by mutations or host repair systems that diminish the efficiency with which CRISPR/Cas induces double-strand breaks in new transconjugants. Here, we compared the efficiencies of conjugation-based killing systems based on the delivery of CRISPR-Cas9 elements or toxin genes encoding the bacteriophage lambda Kil peptide or the F plasmid-encoded CcdB. equipped with one of two efficient conjugation systems, pKM101 (IncN) or F (IncF), served as donors to mobilize plasmids carrying the cognate sequence and one or more toxic elements. Overall, toxin gene delivery proved significantly more effective than CRISPR-Cas9 in killing of transconjugant population, but the highest levels of growth suppression of both and recipients were achieved by a combination of CRISPR-Cas9 plus one or two toxin genes. By contrast, capsule production conferred no or very slight protective effects on plasmid acquisition and killing of either species. We propose that the conjugative co-transfer of two or more toxic elements with distinct mechanisms of action has strong potential for growth suppression of targeted species in environmental or clinical settings.IMPORTANCEThe prevalence of antibiotic resistance emphasizes the need for alternative antimicrobial intervention strategies. We engineered for conjugative transmission of plasmids encoding CRISPR-Cas9 elements or genes encoding the cell division inhibitor Kil or gyrase poisoner CcdB. Delivery of toxin genes more effectively suppressed the growth of recipients than CRISPR-Cas9, but the combinatorial delivery of CRISPR-Cas9 and a toxin gene or two toxin genes elicited the strongest killing effects. Capsule production by or recipient cells had no or little protective effect on plasmid acquisition or growth suppression. Our findings suggest that probiotic donor strains equipped for conjugative delivery of two or more toxic elements may prove effective as an alternative or adjunct to traditional antimicrobials.
细菌IV型分泌系统(T4SS)因其在移动遗传元件或效应蛋白传播中的作用而在医学上存在问题,但它们在新型抗菌疗法方面也具有巨大潜力。最近的研究已利用接合系统的T4SS亚家族来递送基因编辑CRISPR/Cas系统,以破坏耐药基因或杀死靶向细菌受体。然而,接合性CRISPR/Cas递送的治疗潜力因突变或宿主修复系统而受到损害,这些系统会降低CRISPR/Cas在新的接合子中诱导双链断裂的效率。在此,我们比较了基于CRISPR-Cas9元件递送或编码噬菌体λ Kil肽或F质粒编码的CcdB的毒素基因的基于接合的杀伤系统的效率。配备两种高效接合系统之一pKM101(IncN)或F(IncF)的菌株用作供体,以转移携带同源序列和一种或多种毒性元件的质粒。总体而言,毒素基因递送在杀死接合子群体方面被证明比CRISPR-Cas9有效得多,但通过CRISPR-Cas9加一种或两种毒素基因的组合实现了对两种受体最高水平的生长抑制。相比之下,荚膜产生对两种物种的质粒获取和杀伤没有或只有非常轻微的保护作用。我们提出,两种或更多种具有不同作用机制的毒性元件的接合共转移在环境或临床环境中对靶向物种的生长抑制具有强大潜力。重要性抗生素耐药性的普遍存在强调了对抗菌干预替代策略的需求。我们设计了用于编码CRISPR-Cas9元件的质粒或编码细胞分裂抑制剂Kil或回旋酶毒害剂CcdB的基因的接合传递。毒素基因的递送比CRISPR-Cas9更有效地抑制了受体的生长,但CRISPR-Cas9与一种毒素基因或两种毒素基因的组合递送引发了最强的杀伤效果。受体细胞产生荚膜对质粒获取或生长抑制没有或几乎没有保护作用。我们的研究结果表明,配备用于两种或更多种毒性元件接合递送的益生菌供体菌株可能被证明是传统抗菌药物的有效替代物或辅助物。
Cochrane Database Syst Rev. 2018-2-6
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2025-6-19
Antibiotics (Basel). 2025-1-8
Pharmaceutics. 2024-12-2
Microb Biotechnol. 2024-11
NPJ Biofilms Microbiomes. 2024-3-13