Suppr超能文献

零间隙电解槽中独特的电致分子互变异构的原位拉曼表征促进了CO还原。

Operando Raman characterization of unique electroinduced molecular tautomerization in zero-gap electrolyzers promotes CO reduction.

作者信息

Li Ling, Ye Wentao, Liu Qiliang, Liu Ruoxi, Lu Xingyu, Yao Tianbing, Wang Linqin, Gu Bing, Sun Licheng, Yang Wenxing

机构信息

Center of Artificial Photosynthesis for Solar Fuels and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024 Zhejiang, China.

Department of Chemistry, School of Science, Westlake University, Hangzhou 310024 Zhejiang, China.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2418144122. doi: 10.1073/pnas.2418144122. Epub 2025 Jul 3.

Abstract

Membrane electrode assembly (MEA) represents an advanced type of electrochemical device currently widely used in various electrocatalysis applications [e.g., electrochemical CO reduction reaction (CORR)], featuring no explicit catholyte flow and a unique "solid-liquid-gas" triple-phase interface. Herein, we identify a peculiar electroinduced thiol to thione tautomerization of 4-mercaptopyridine (4MPy) molecule on Cu catalyst surfaces at this triple-phase interface driven by cathodic polarization. This leads to a significant performance improvement of CORR on Cu with a C Faradaic efficiency of over 80% with more than 60% CH, as well as a 300 mV reduction of cell voltage compared to bare Cu. A home-designed MEA-type operando Raman cell enables mechanistic studies directly under a current density of over 100 mA cm, elucidating the intricate impacts of the 4MPy tautomerization on the local catalytic environments under real reaction conditions. Surprisingly, this tautomerization does not occur in other commonly utilized electrolyzers, e.g., flow cell and H-cell, even with the same catalyst and electrolyte conditions. The direct contact with the electrolyte in the latter cells was found to cause rapid desorption of 4MPy from the catalyst surface before its possible chemical transformation. These results highlight the opportunities of utilizing surface molecular tautomerization to promote CORR performance and using the triple phase of MEA to drive reactions that would otherwise be hard to happen in classical electrochemical devices of similar conditions.

摘要

膜电极组件(MEA)是一种先进的电化学装置,目前广泛应用于各种电催化应用[例如,电化学CO还原反应(CORR)],其特点是没有明确的阴极电解液流动,并且具有独特的“固-液-气”三相界面。在此,我们发现在该三相界面处,在阴极极化的驱动下,铜催化剂表面上的4-巯基吡啶(4MPy)分子会发生一种特殊的电诱导硫醇-硫酮互变异构。这导致铜上CORR的性能显著提高,碳法拉第效率超过80%,甲烷含量超过60%,与裸铜相比,电池电压降低300 mV。一种自行设计的MEA型原位拉曼电池能够在超过100 mA cm²的电流密度下直接进行机理研究,阐明了4MPy互变异构在实际反应条件下对局部催化环境的复杂影响。令人惊讶的是,即使在相同的催化剂和电解质条件下,这种互变异构在其他常用的电解槽中,如流动槽和H型槽中也不会发生。研究发现,后一种电解槽中与电解质的直接接触会导致4MPy在可能发生化学转化之前从催化剂表面迅速解吸。这些结果突出了利用表面分子互变异构来提高CORR性能以及利用MEA的三相来驱动在类似条件的传统电化学装置中难以发生的反应的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecb6/12260428/6f49a54b8b8a/pnas.2418144122sch01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验