Suppr超能文献

拒绝服务攻击下布尔控制网络集群同步的双重强化学习

Double reinforcement learning for cluster synchronization of Boolean control networks under denial of service attacks.

作者信息

Deng Wanqiu, Huang Chi, Shuai Qinghong

机构信息

School of Management Science and Engineering, Southwestern University of Finance and Economics, Chengdu, China.

School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu, China.

出版信息

PLoS One. 2025 Jul 3;20(7):e0327252. doi: 10.1371/journal.pone.0327252. eCollection 2025.

Abstract

This paper investigates the asymptotic cluster synchronization of Boolean control networks (BCNs) under denial-of-service (DoS) attacks, where each state node in the network experiences random data loss following a Bernoulli distribution. First, the algebraic representation of BCNs under DoS attacks is established using the semi-tensor product (STP) of matrices. Using matrix-based methods, some necessary and sufficient algebraic conditions for BCNs to achieve asymptotic cluster synchronization under DoS attacks are derived. For both model-based and model-free cases, appropriate state feedback controllers guaranteeing asymptotic cluster synchronization of BCNs are obtained through set-iteration and double-deep Q-network (DDQN) methods, respectively. Besides, a double reinforcement learning algorithm is designed to identify suitable state feedback controllers. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.

摘要

本文研究了拒绝服务(DoS)攻击下布尔控制网络(BCN)的渐近簇同步问题,其中网络中的每个状态节点都经历服从伯努利分布的随机数据丢失。首先,利用矩阵的半张量积(STP)建立了DoS攻击下BCN的代数表示。采用基于矩阵的方法,推导了BCN在DoS攻击下实现渐近簇同步的一些充要代数条件。对于基于模型和无模型的情况,分别通过集迭代和双深度Q网络(DDQN)方法获得了保证BCN渐近簇同步的适当状态反馈控制器。此外,设计了一种双重强化学习算法来识别合适的状态反馈控制器。最后,给出了一个数值例子来验证所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06a2/12225902/af96c2765b26/pone.0327252.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验