Suppr超能文献

一种用于信号网络建模的线性预测的布尔方法。

A Boolean approach to linear prediction for signaling network modeling.

机构信息

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

PLoS One. 2010 Sep 16;5(9):e12789. doi: 10.1371/journal.pone.0012789.

Abstract

The task of the DREAM4 (Dialogue for Reverse Engineering Assessments and Methods) "Predictive signaling network modeling" challenge was to develop a method that, from single-stimulus/inhibitor data, reconstructs a cause-effect network to be used to predict the protein activity level in multi-stimulus/inhibitor experimental conditions. The method presented in this paper, one of the best performing in this challenge, consists of 3 steps: 1. Boolean tables are inferred from single-stimulus/inhibitor data to classify whether a particular combination of stimulus and inhibitor is affecting the protein. 2. A cause-effect network is reconstructed starting from these tables. 3. Training data are linearly combined according to rules inferred from the reconstructed network. This method, although simple, permits one to achieve a good performance providing reasonable predictions based on a reconstructed network compatible with knowledge from the literature. It can be potentially used to predict how signaling pathways are affected by different ligands and how this response is altered by diseases.

摘要

DRIAM4(用于反向工程评估和方法的对话)“预测信号网络建模”挑战赛的任务是开发一种方法,该方法可以根据单刺激/抑制剂数据重建因果网络,用于预测多刺激/抑制剂实验条件下的蛋白质活性水平。本文提出的方法在该挑战赛中表现最佳之一,它由 3 个步骤组成:1. 从单刺激/抑制剂数据中推断出布尔表,以分类特定的刺激和抑制剂组合是否会影响蛋白质。2. 从这些表开始重建因果网络。3. 根据从重建网络中推断出的规则对训练数据进行线性组合。尽管这种方法很简单,但它可以根据与文献知识兼容的重建网络提供合理的预测,从而实现良好的性能。它可以潜在地用于预测信号通路如何受到不同配体的影响,以及这种反应如何被疾病改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c20/2940821/92cac401e148/pone.0012789.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验