Doh Hyunjeong, You Hyeokjun, Kim Hwijoong, Son Minki, Kim Sejoong, Ho Dongil, Kim Sihyun, Kim Choongik
Department of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
Department of Electronic and Electrical Convergence Engineering, Hongik University, 2639 Sejong-ro, Jochiwon-eup, Sejong 30016, Republic of Korea.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40662-40672. doi: 10.1021/acsami.5c05480. Epub 2025 Jul 3.
Metal oxide semiconductors are widely used in display technologies due to their high electron mobility, low leakage current, and robust switching characteristics. However, ensuring stability under AC bias stress, which is an inherent condition for practical device operation, remains a critical challenge. In particular, hot carrier effects (HCE) have been identified as a key mechanism for device instability under AC bias stress, as they induce oxygen vacancies (V) and acceptor-like defect states. In this study, we selected IZO, a material with excellent properties but weak M-O bonds, to improve AC stability. To address this challenge, we propose a heterobilayer channel thin-film transistor (TFT) consisting of an indium-zinc oxide (IZO) bottom layer and a Hf-doped IZO top layer as a solution to enhance AC bias stability as well as electron mobility. The Hf-doped IZO top layer forms strong bonds with oxygen, effectively reducing oxygen vacancies and V-related defect states, while inhibiting excessive hot carrier accumulation near the drain electrode. Meanwhile, the IZO bottom layer provides an abundance of oxygen vacancies, contributing to enhanced mobility. The fabricated TFT with the IZO:Hf/IZO bilayer channel exhibits a mobility of 7.3 cm/(V s) and an degradation rate of only 4% after 1000 s, demonstrating excellent device stability under AC drain bias stress. In addition, negligible hysteresis and excellent reproducibility were also achieved even under AC bias conditions. After stress, the threshold voltage shift was only 0.11 V, with a current on/off ratio of 1.8 × 10 and a subthreshold swing of 512 mV/dec. TCAD simulations further validated the heterobilayer structure in improving stability under AC drain bias stress by demonstrating its effectiveness in suppressing defect generation.
金属氧化物半导体因其高电子迁移率、低漏电流和稳健的开关特性而被广泛应用于显示技术中。然而,在交流偏置应力下确保稳定性,这是实际器件运行的固有条件,仍然是一个关键挑战。特别是,热载流子效应(HCE)已被确定为交流偏置应力下器件不稳定的关键机制,因为它们会诱导氧空位(V)和类受主缺陷态。在本研究中,我们选择了具有优异性能但M-O键较弱的IZO来提高交流稳定性。为应对这一挑战,我们提出了一种由氧化铟锌(IZO)底层和Hf掺杂的IZO顶层组成的异质双层沟道薄膜晶体管(TFT),作为提高交流偏置稳定性以及电子迁移率的解决方案。Hf掺杂的IZO顶层与氧形成强键,有效减少氧空位和与V相关的缺陷态,同时抑制漏极电极附近过多的热载流子积累。与此同时,IZO底层提供大量的氧空位,有助于提高迁移率。所制备的具有IZO:Hf/IZO双层沟道的TFT表现出7.3 cm/(V s)的迁移率,在1000 s后退化率仅为4%,在交流漏极偏置应力下显示出优异的器件稳定性。此外,即使在交流偏置条件下也实现了可忽略不计的滞后现象和优异的再现性。应力后,阈值电压偏移仅为0.11 V, 电流开/关比为1.8×10,亚阈值摆幅为512 mV/dec。TCAD模拟通过证明其在抑制缺陷产生方面的有效性,进一步验证了异质双层结构在提高交流漏极偏置应力下的稳定性方面的作用。