Suppr超能文献

表面等离子体共振效应增强自旋极化电子以促进光催化CO还原。

Surface plasmon resonance effect enhances spin-polarized electrons to promote photocatalytic CO reduction.

作者信息

Lang Yanni, Hong Dongfeng, Ma Rongze, Zhang Haoqiang, Xu Liang, Zhao Xinye, Wu Dan, Li Yongjin, Zhou Dacheng, Song Zhiguo, Wen Yugeng, Yang Yong, Han Jin, Qiu Jianbei

机构信息

College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

出版信息

J Colloid Interface Sci. 2025 Dec;699(Pt 2):138262. doi: 10.1016/j.jcis.2025.138262. Epub 2025 Jun 22.

Abstract

The construction of chiral materials has always been a research hotspot in the field of inorganic chiral nanomaterials. By introducing chiral destructive agents, materials are endowed with chiral nanostructures, its unique chiral-induced spin selectivity (CISS) can be applied in the field of photocatalysis. Au nanoparticles (Au NPs) are a typical photosensitizer capable of producing surface plasmon resonance (SPR) effects, producing CO and CH in photocatalytic CO reduction. However, the activity of Au NPs is low, resulting in a low reaction yield. Therefore, we investigated the photocatalytic CO reduction performance of the Au NPS deposited inorganic chiral bismuth bromide oxide nanomaterial photocatalyst (D-BiOBr/Au). It is worth noting that D-BiOBr/Au chiral materials enhance spin-polarized electrons due to SPR and CISS effect, and their photocatalytic CO reduction performance is significantly better than D-BiOBr and original BiOBr without SPR and CISS effect. The CO yield of D-BiOBr/Au0.3 % is 24.39 μmol/g h, which is 2.02 times of D-BiOBr and 2.43 times of BiOBr, respectively. In the Mc-AFM test, the tunnel current of D-BiOBr/Au0.3 % was the strongest, showing stronger spin-polarized electrons. The mechanism of photocatalytic CO reduction was further studied by FDTD simulation. The reason for the improved photocatalytic CO reduction efficiency of D-BiOBr/Au is the increase of spin-polarized electrons due to the SPR effect, thus prolonging the carrier lifetime and promoting spin-polarized electron-hole separation. The results show that enhancing spin-polarized electrons through SPR effect is an effective strategy to improve photocatalyzed CO reduction in photocatalyzed semiconductors.

摘要

手性材料的构建一直是无机手性纳米材料领域的研究热点。通过引入手性破坏剂,材料被赋予手性纳米结构,其独特的手性诱导自旋选择性(CISS)可应用于光催化领域。金纳米颗粒(Au NPs)是一种典型的光敏剂,能够产生表面等离子体共振(SPR)效应,在光催化CO还原中产生CO和CH。然而,Au NPs的活性较低,导致反应产率较低。因此,我们研究了负载金纳米颗粒的无机手性溴氧化铋纳米材料光催化剂(D-BiOBr/Au)的光催化CO还原性能。值得注意的是,D-BiOBr/Au手性材料由于SPR和CISS效应增强了自旋极化电子,其光催化CO还原性能明显优于没有SPR和CISS效应的D-BiOBr和原始BiOBr。D-BiOBr/Au0.3%的CO产率为24.39 μmol/g h,分别是D-BiOBr的2.02倍和BiOBr的2.43倍。在Mc-AFM测试中,D-BiOBr/Au0.3%的隧道电流最强,表明自旋极化电子更强。通过FDTD模拟进一步研究了光催化CO还原的机理。D-BiOBr/Au光催化CO还原效率提高的原因是SPR效应导致自旋极化电子增加,从而延长了载流子寿命并促进了自旋极化电子-空穴分离。结果表明,通过SPR效应增强自旋极化电子是提高光催化半导体中光催化CO还原的有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验