Zhou Yongjie, Guo Zihan, Chang Sam K C, Zhang Yan, Hong Hui, Luo Yongkang, Tan Yuqing
Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA.
Ultrason Sonochem. 2025 Jun 29;120:107452. doi: 10.1016/j.ultsonch.2025.107452.
Silver carp viscera, a lipid‑rich byproduct typically discarded, poses environmental pollution and resource wastage. Utilizing this byproduct for fish oil extraction offers a sustainable alternative; however, conventional enzymatic methods are inefficient, labor‑intensive to optimize, and yield oil susceptible to rapid oxidation. For the first time, this study developed an integrated ultrasound pretreatment and artificial neural network-genetic algorithm (ANN‑GA) strategy to maximize fish oil extraction efficiency, followed by microencapsulation in gelatin-hexametaphosphate complex coacervation microcapsules (GSM). The ANN demonstrated excellent predictive accuracy (R = 0.99). Under GA-optimized conditions (ultrasonic power: 150 W, ultrasound pretreatment: 20.75 min, protease dosage: 6889 U/g protein, hydrolysis time: 1.75 h), extraction efficiency reached 79.44 %, producing oil with 46.23 % unsaturated fatty acids. Further optimization of encapsulation parameters increased GSM encapsulation efficiency (EE) to 93.33 %, surpassing gelatin‑only microcapsules (GM, 84.22 %). FT‑IR analysis indicated that electrostatic interactions induced a more ordered protein secondary structure in GSM, with α-helix and β-sheet contents rising by 5.54 % and 6.09 %, respectively. Consequently, GSM exhibited enhanced thermal stability (T = 98.1 °C vs. 66.2 °C for GM), storage stability (EE unchanged for 30 days at 4 and 25°C), and oxidative stability (peroxide value approximately one-third that of GM after 10 days at 60 °C). In vitro digestion revealed GSM's controlled release capability, liberating only 9.3 and 56 % of encapsulated fish oil during the gastric and intestinal phases, respectively. Sensory evaluation indicated significantly reduced fatty and fishy odors. Overall, this work provides a theoretical foundation for sustainable production of high‑quality freshwater fish oil.
鲢鱼内脏是一种通常被丢弃的富含脂质的副产品,会造成环境污染和资源浪费。将这种副产品用于提取鱼油提供了一种可持续的替代方案;然而,传统的酶法效率低下,优化过程 labor-intensive,且产出的油易快速氧化。本研究首次开发了一种集成超声预处理和人工神经网络-遗传算法(ANN-GA)策略,以最大化鱼油提取效率,随后将其微胶囊化在明胶-六偏磷酸复合凝聚微胶囊(GSM)中。人工神经网络显示出优异的预测准确性(R = 0.99)。在遗传算法优化的条件下(超声功率:150 W,超声预处理:20.75分钟,蛋白酶用量:6889 U/g蛋白质,水解时间:1.75小时),提取效率达到79.44%,产出的油含有46.23%的不饱和脂肪酸。对包封参数的进一步优化将GSM的包封效率(EE)提高到93.33%,超过了仅使用明胶的微胶囊(GM,84.22%)。傅里叶变换红外光谱分析表明,静电相互作用在GSM中诱导了更有序的蛋白质二级结构,α-螺旋和β-折叠含量分别增加了5.54%和6.09%。因此,GSM表现出增强的热稳定性(T = 98.1°C,而GM为66.2°C)、储存稳定性(在4°C和25°C下30天EE不变)和氧化稳定性(在60°C下10天后过氧化值约为GM的三分之一)。体外消化显示GSM具有控释能力,在胃相和肠相中分别仅释放9.3%和56%的包封鱼油。感官评价表明,脂肪酸味和鱼腥味显著降低。总体而言,这项工作为可持续生产高质量淡水鱼油提供了理论基础。