Chand Subhash, Kumar Ravi, Thakur Naveen, Kumar Kuldeep, Umar Ahmad, Almas Tubia, Baskoutas Sotirios
Department of Chemistry, Career Point University, Hamirpur, (H.P.), 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, (H.P.), 176041, India.
Department of Chemistry, Baddi University of Emerging Science and Technology, Baddi, Solan, (H.P.), 173205, India.
Chemosphere. 2025 Sep;385:144540. doi: 10.1016/j.chemosphere.2025.144540. Epub 2025 Jul 3.
The conversion of biowaste into carbon nanomaterials (CNMs) and their metal oxide composites has emerged as a sustainable strategy to address environmental challenges while advancing nanotechnology. This comprehensive review critically examines recent advancements in the green synthesis, properties, and applications of biowaste-derived CNMs, including carbon nanotubes, graphene, and carbon quantum dots, alongside their metal oxide hybrids. We highlight eco-friendly synthesis techniques such as hydrothermal carbonization, chemical vapour deposition, and microwave-assisted methods, which enable the scalable production of high-performance nanomaterials with tailored properties. These materials exhibit exceptional characteristics, including high surface area, tunable porosity, superior electrical conductivity, and biocompatibility, making them ideal for energy storage, environmental remediation, catalysis, and biomedical applications. The integration of metal oxides (e.g., ZnO, TiO, FeO) with CNMs enhances their functional performance through synergistic effects, improving photocatalytic activity, electrochemical stability, and sensing capabilities. We discuss their role in supercapacitors, biosensors, antimicrobial agents, and pollutant degradation, emphasizing mechanistic insights and structure-property relationships. Despite significant progress, challenges such as scalable synthesis, long-term stability, and toxicity assessment remain unresolved. Future research should focus on optimizing synthesis protocols, exploring novel composite designs, and assessing environmental impacts to facilitate commercialization. This review provides a forward-looking perspective on the potential of biowaste-derived nanomaterials to drive sustainable technological innovations, aligning with global circular economy goals.
将生物废料转化为碳纳米材料(CNMs)及其金属氧化物复合材料,已成为一种可持续战略,既能应对环境挑战,又能推动纳米技术发展。这篇综述批判性地审视了生物废料衍生的碳纳米材料(包括碳纳米管、石墨烯和碳量子点)及其金属氧化物杂化物在绿色合成、性质和应用方面的最新进展。我们重点介绍了水热碳化、化学气相沉积和微波辅助等环保合成技术,这些技术能够规模化生产具有定制特性的高性能纳米材料。这些材料具有优异的特性,包括高比表面积、可调孔隙率、卓越的导电性和生物相容性,使其成为能量存储、环境修复、催化和生物医学应用的理想选择。金属氧化物(如ZnO、TiO、FeO)与碳纳米材料的结合通过协同效应增强了它们的功能性能,提高了光催化活性、电化学稳定性和传感能力。我们讨论了它们在超级电容器、生物传感器、抗菌剂和污染物降解中的作用,强调了机理见解和结构-性能关系。尽管取得了重大进展,但可扩展合成、长期稳定性和毒性评估等挑战仍未解决。未来的研究应专注于优化合成方案、探索新型复合材料设计以及评估环境影响,以促进商业化。这篇综述对生物废料衍生的纳米材料推动可持续技术创新的潜力提供了前瞻性视角,符合全球循环经济目标。