Suppr超能文献

Soil antimony-microbe interactions in an abandoned antimony mine in southern China.

作者信息

Pan Libo, Chen Feng, Zhao Qingying, Yang Junyi, Qiu Yanling, Wu Xuefang, Guan Xiao

机构信息

College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.

出版信息

Environ Res. 2025 Nov 1;284:122268. doi: 10.1016/j.envres.2025.122268. Epub 2025 Jul 1.

Abstract

Soil contamination resulting from antimony (Sb) mining activities poses a substantial environmental risk in karst ecosystems. Understanding microbially mediated Sb transformation mechanisms is critical for advancing eco-friendly remediation technologies. The structural and functional responses of soil microbial communities were systematically investigated across three distinct areas (mining, smelting, and control) in typical Sb mining regions of Southwest China. Integrated geochemical and multi-omics analyses revealed pronounced Sb contamination gradients. Total Sb (Sb) concentrations followed the order: smelting area (8231.97 ± 6875.22) > mining area (735.03 ± 367.21 mg/kg) > control area (69.11 ± 0.47 mg/kg). Microbial community profiling indicated bacterial dominance (97.6 % relative abundance), followed by archaea (2.0 %) and fungi (0.4 %). Notably, eight bacterial genera (Achromobacter, Sphingomonas, Thermomonas, Janibacter, Stenotrophomonas, Arenimonas, Bifidobacterium, and Halothiobacillus) exhibited significant positive correlations (p < 0.01) with Sb concentrations, suggesting their resistance to Sb. Functional annotation revealed critical associations between Sb biotransformation and microbial metabolic pathways, particularly sulfur redox cycling (sulfur oxidation: soxABXYZ; sulfate reduction: dsrAB) and nitrogen metabolism (nitrate reduction: narGHI). Co-occurrence network analysis indicated synergistic relationships between Sb-resistant microbes and elemental-cycling functional genes. Collectively, the results suggest that microbial Sb transformation in karst soils involves sulfur-assisted electron transfer and nitrate-dependent Sb oxidation. This study provides insight into the biogeochemical drivers of Sb fate in contaminated environments and establishes a conceptual framework for the development of microbiome-based remediation strategies suitable for Sb-polluted karst regions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验