Suppr超能文献

KIR3DL1与人类白细胞抗原结合的预测

Prediction of KIR3DL1 and human leukocyte antigen binding.

作者信息

Maiers Martin, Louzoun Yoram, Pymm Philip, Vivian Julian P, Rossjohn Jamie, Brooks Andrew G, Saunders Philippa M

机构信息

CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, Minnesota, USA.

Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel.

出版信息

J Biol Chem. 2025 Jul 1;301(8):110437. doi: 10.1016/j.jbc.2025.110437.

Abstract

KIR3DL1 is a polymorphic inhibitory receptor on natural killer (NK) cells that recognizes HLA class I allotypes. While the Bw4 motif spanning residues 77 to 83 is central to this interaction, structural studies have shown that polymorphisms elsewhere in the HLA molecule also influence binding. To address the challenge of predicting interactions across the extensive diversity of both KIR3DL1 and HLA, we developed a machine learning model trained on binding data from nine KIR3DL1 tetramers tested against a panel of HLA class I allotypes. Multiple models were evaluated using different subsets of HLA sequence features, including the full α1/α2 domains, the Bw4 motif, and α-helical residues excluding loop regions. The best-performing model, using Multi Label Vector Optimization (MLVO) and trained on α-helix positions, achieved AUC scores ranging from 0.74 to 0.974 across all KIR3DL1 allotypes. The model effectively distinguished high and low binders, revealing that residues beyond the Bw4 motif contribute to binding strength in a nonadditive manner. These findings demonstrate that binding affinity cannot be accurately captured by binary classifiers or single-motif rules. Our approach offers a more nuanced framework for modeling KIR3DL1-HLA interactions, with broad applicability to immunogenetic research and clinical decision-making.

摘要

KIR3DL1是自然杀伤(NK)细胞上的一种多态性抑制性受体,可识别HLA I类同种异型。虽然跨越第77至83位残基的Bw4基序是这种相互作用的核心,但结构研究表明,HLA分子其他位置的多态性也会影响结合。为应对预测KIR3DL1和HLA广泛多样性之间相互作用的挑战,我们开发了一种机器学习模型,该模型基于针对一组HLA I类同种异型测试的9种KIR3DL1四聚体的结合数据进行训练。使用不同的HLA序列特征子集评估了多个模型,包括完整的α1/α2结构域、Bw4基序以及不包括环区的α螺旋残基。表现最佳的模型使用多标签向量优化(MLVO)并基于α螺旋位置进行训练,在所有KIR3DL1同种异型上的AUC分数范围为0.74至0.974。该模型有效地区分了高结合剂和低结合剂,表明Bw4基序以外的残基以非加性方式对结合强度有贡献。这些发现表明,二元分类器或单基序规则无法准确捕捉结合亲和力。我们的方法为模拟KIR3DL1 - HLA相互作用提供了一个更细致入微的框架,在免疫遗传学研究和临床决策中具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b83/12309609/18ed637dd59e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验