Suppr超能文献

一种基于新型缪尔黑德均值算子的决策算法及其在利用循环q阶正交对模糊信息对篮球运动员进行定向中的应用。

A novel muirhead mean operators based decision algorithm with applications in the orientation of basketball players using circular q-rung orthopair fuzzy information.

作者信息

Wang Changyou

机构信息

Physical Education, Capital University of Economics and Business, Fengtai, Beijing, 100070, China.

出版信息

Sci Rep. 2025 Jul 3;15(1):23810. doi: 10.1038/s41598-025-99172-9.

Abstract

Modern basketball players depend on decision-making techniques to enhance their position orientation and performance results. The way a player positions, together with their effectiveness and gameplay strategy, changes based on what they have learned and the amount of experience they have gained. A new intelligent decision-making model has been created to evaluate basketball player orientation while enhancing their performance through assessments. The proposed evaluation method uses an advanced decision algorithm based on circular q-rung orthopair fuzzy sets (Cq-ROFS), representing an evolved extension of fuzzy set theory to handle uncertain and complex data from player evaluation. This study introduced four innovative aggregation operators, which include circular q-rung orthopair fuzzy muirhead mean (Cq-ROFMM), circular q-rung orthopair fuzzy dual muirhead mean (Cq-ROFDMM), circular q-rung orthopair fuzzy weighted muirhead mean (Cq-ROFWMM) and circular q-rung orthopair fuzzy dual weighted muirhead mean (Cq-ROFDWMM). The decision-making accuracy improves when these operators maintain criterion relationships because they produce unbiased and dependable evaluations of player abilities and expertise. The development includes constructing key theoretical properties while creating a reliable multi-criteria decision-making (MCDM) algorithm that enables efficient computations. A case study of basketball player orientation implements the proposed methodology to prove its practical success and demonstrates its ability to handle uncertainties. The proposed method outperforms existing techniques according to sensitivity and comparative analysis tests because it demonstrates robustness, flexibility, and enhanced decision-making precision. The proposed model demonstrates emerging value as an intelligent sports analytics tool and a broader MCDM applications solution.

摘要

现代篮球运动员依靠决策技术来提高他们的位置定位和比赛成绩。球员的定位方式,连同其有效性和比赛策略,会根据他们所学的知识和获得的经验量而发生变化。一种新的智能决策模型已经创建出来,用于评估篮球运动员的定位,同时通过评估提高他们的表现。所提出的评估方法使用了一种基于循环q阶正交对模糊集(Cq-ROFS)的先进决策算法,它代表了模糊集理论的一种演进扩展,以处理来自球员评估的不确定和复杂数据。本研究引入了四种创新的聚合算子,包括循环q阶正交对模糊缪尔海德均值(Cq-ROFMM)、循环q阶正交对模糊对偶缪尔海德均值(Cq-ROFDMM)、循环q阶正交对模糊加权缪尔海德均值(Cq-ROFWMM)和循环q阶正交对模糊对偶加权缪尔海德均值(Cq-ROFDWMM)。当这些算子保持准则关系时,决策准确性会提高,因为它们能对球员能力和专业知识进行无偏且可靠的评估。该发展包括构建关键理论性质,同时创建一种可靠的多准则决策(MCDM)算法,以实现高效计算。一项关于篮球运动员定位的案例研究实施了所提出的方法,以证明其实际成效,并展示其处理不确定性的能力。根据敏感性和比较分析测试,所提出的方法优于现有技术,因为它展示了稳健性、灵活性和更高的决策精度。所提出的模型作为一种智能体育分析工具和更广泛的MCDM应用解决方案展现出了新的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验